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PREFACE

Knot theory is an unusual field. On the one hand, its
subject matter is familiar to everyone; the most difficult
questions concerning knots are easy to state and arise as
naturally as any problems in mathematics. On the other
hand, the subject seems quite different from those that
usually fall into the realm of mathematics; even for trained
mathematicians, it is often not clear how rigorous math-
ematical methods can be used to model the most basic
questions concerning knots. This book describes some of
the mathematical techniques of knot theory, and illustrates
their application to a variety of problems.

The early chapters discuss how knotting can be given a
formal mathematical description, present three of the basic
methods of the theory, and then investigate the relation-
ships among the methods. The exposition then moves to
a study of properties of knots, including a detailed look at
symmetries. Higher dimensional knotting is treated next.
The book concludes with a survey of recent progress in
combinatorial knot theory.

Mathematical prerequisites have been kept to a mini-
mum. Basic linear algebra is used frequently and a famil-
iarity with elementary group theory is called for occasion-
ally. The exercises are an essential part of the exposition;
many central ideas are developed there. More important,
the exercises provide an opportunity to enjoy the experi-
ence of working in knot theory.

xi



xii KNOT THEORY

The goal is to present a cross-section of the many fas-
cinating aspects of knot theory; topics have been chosen to
demonstrate a diversity of techniques and their interplay,
not to provide a complete survey. Proofs are used to illus-
trate the methods of the subject, and distracting technical
arguments are usually summarized. The proofs that are
presented range from detailed arguments to brief sketches.
A survey of the many accessible sources on the subject is
included in the references for those wanting to pursue the
material in greater detail or breadth.

CONTENTS SUMMARY

There are three main parts to this book. The first
part, comprising Chapters 2 through 5, develops the fun-
damentals of knot theory. Chapter 1 includes a discussion
of the recent history of the study of knots. In the process
some of the most interesting problems of knot theory are
described. Chapter 2 focuses on the basic material of the
subject, the precise definitions of knots and their deforma-
tions. It is here that one begins to see how mathematical
methods can be applied to the study of knotting. The
three main techniques of knot theory appear in the next
chapters: Chapter 3 is devoted to combinatorial methods,
Chapter 4 presents geometric techniques, and Chapter 5
illustrates algebraic tools. These chapters demonstrate
the nature of the techniques and the types of problems
to which each apply.

The second part presents advanced topics in knot the-
ory. Chapter 6 describes relationships among the methods
of the earlier chapters. The sources of these relationships
are quite deep and subtle. As a consequence the work is
delicate, but the results provide many new insights. In
Chapter 7 several properties of knots are presented. The
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intention here is to describe some of the very natural ques-
tions that occur about knots and to illustrate how the
methods developed so far can give detailed answers to these
questions. Chapter 8 is devoted to the study of symmetry,
one of the most beautiful properties of knotting. It is here
that the tremendous power of the techniques developed
earlier becomes most evident.

The third part is independent of the material of the
second part. Two modern aspects of the subject are ex-
plored in these closing chapters. Chapter 9 provides an
introduction to high dimensional knot theory and briefly
indicates how the methods of classical knot theory can be
applied. Chapter 10 describes new combinatorial meth-
ods. These methods greatly extend those of Chapter 3;
the study of these combinatorial invariants is one of the
most active and fascinating areas of knot theory today.
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CHAPTER 1:
A CENTURY OF KNOT THEORY

In 1877 P. G. Tait published the first in a series of papers
addressing the enumeration of knots. Lord Kelvin’s the-
ory of the atom stated that chemical properties of elements
were related to knotting that occurs between atoms, im-
plying that insights into chemistry would be gained with
an understanding of knots. This motivated Tait to begin
to assemble a list of all knots that could be drawn with
a small number of crossings. Initially the project focused
on knots of 5 or 6 crossings, but by 1900 his work, along
with that of C. N. Little, had almost completed the enu-
meration of 10-crossing knots. The diagrams in Appendix
1 indicate the kind of enumeration he was seeking.

Tait viewed two knots as equivalent, or of the same
type, if one could be deformed to appear as the other, and
sought an enumeration that included each knot type only
once. The difficulty of this task is illustrated by the four
knots in Figure 1.1. For now a knot can be thought of
simply as a loop of rope. With some effort it is possible to
deform the second knot to appear untangled, like the first.
On the other hand, no amount of effort seems sufficient to
unknot the third or fourth. Is it possible that with some
clever manipulation the third could be transformed to look
like the fourth? If a list of knots is going to avoid knots of
the same type appearing repeatedly, means of addressing
such questions are needed.




2 KNOT THEORY

When Tait began his work in the subject, the formal
mathematics needed to address the study was unavailable.
The arguments that his lists were complete are convincing,
but the evidence that the listed knots are distinct was em-
pirical. Developing means of proving that knots are dis-
tinct remains the most significant of the many problems
introduced by Tait.

O &9

Figure 1.1

Work at the turn of the century placed the subject of
topology on firm mathematical ground, and it became pos-
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sible to define the objects of knot theory precisely, and to
prove theorems about them. In particular, algebraic meth-
ods were introduced into the subject, and these provided
the means to prove that

knots were actually distinct.

The greatest success in this

early period was the proof

by M. Dehn in 1914 that

the two simplest looking

knots, the right- and left-

handed trefoils, illustrated

in Figure 1.2, represent dis-

tinct knot types; that is,

there is no way to deform

one to look like the other. Figure 1.2

In 1928 J. Alexander described a method of associat-
ing to each knot a polynomial, now called the Alexander
polynomial, such that if one knot can be deformed into an-
other, both will have the same associated polynomial. This
invariant immediately proved to be an especially powerful
tool in the subject; a scan of Appendix 2 reveals that only
8 knots out of the 87 with 9 or fewer crossings share poly-
nomials with others on the list.

Alexander’s initial definitions and arguments were
combinatorial, depending only on a study of the diagram of
a knot, without reference to the algebra that had already
proved so successful.

By 1932 the subject of knot theory was fairly well de-
veloped, and in that year K. Reidemeister published the
first book about knots, Knotentheorie. The tools that he
presented in the text are, in theory, sufficient to distinguish
almost any pair of distinct knots, although as a practical
matter for knots with complicated diagrams the calcula-
tions are often too lengthy to be of use.
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One theme that was well established by this time
was the study of families of knots. The most interest-
ing family is formed by the torus knots, so called be-
cause they can be drawn to lie on the surface of a torus.

/\//\\)
) &

Figure 1.3

For any ordered pair of relatively prime integers, (p,q),
with p > 1 and |g] > 1, there is a corresponding (p,q)-
torus knot. Figure 1.3 illustrates the (3,5)-torus knot
and the (3,—5)-torus knot. The right- and left-handed
trefoils are easily seen to be the same as the (2,3) and
(2,—3)-torus knots, respectively. These knots provide test
cases for new techniques and building blocks for construct-
ing more complicated examples. Dehn and O. Schreier
used group theoretic methods to give the first proof that
the (p,q) and (p',¢’)-torus knots are the same if and only if
the (unordered) sets {p,q} and {p’,q'} are the same. (The
Alexander polynomial of the (p,q)-torus knot turns out
to be (¢/P9l — 1)(t — 1) /(¢Pl - 1)(¢l9l — 1), and except for an
issue of sign, this too is sufficient to distinguish the torus
knots.)

Soon after Knotentheorie appeared, H. Seifert made a
significant discovery. He demonstrated that if a knot is the
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boundary of a surface in 3-space, then that surface can be
used to study the knot; he also presented an algorithm to
construct a surface bounded
by any given knot. Figure
1.4 illustrates a surface with
knotted boundary. This ap-
proach was certainly of prac-
tical importance, as it gave
efficient means for comput-
ing many of the known in-
variants. More important,
it laid the foundation for
the use of geometric meth-
Figure 1.4 ods into a subject that, until
then, had been dominated by combinatorics and algebra.
In 1947 H. Schubert used
geometric methods to prove a
key result concerning the de-
composition of knots. Given
any two knots, one can form

their connected sum, denoted /
K+#J, as illustrated in Fig- (2

ure 1.5. (If knots are thought

of as being tied in a piece

of string, the connected sum

of two knots is formed by

tieing them in separate por- Figure 1.5

tions of the string so that they do not overlap.)
A knot is called prime if it cannot be decomposed as a
connected sum of nontrivial knots. (The appendix illus-
trates those prime knots with 9 crossings or less.) Schu-
bert proved that any knot can be decomposed unique-
ly as the connected sum of prime knots. As an imme-
diate corollary, if K is nontrivial, there is no knot J so
that J# K is unknotted.
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Unlike the problem of distinguishing knots, the prob-
lem of developing general means for proving that one knot
can be deformed into another remained untouched. That
changed in 1957. Early in the century Dehn gave an incor-
rect proof of what has become known as the Dehn Lemma.
In rough terms, it stated that if a knot were indistinguish-
able from the trivial knot using algebraic methods, then
the knot was in fact trivial. In 1957, C. Papakyriakopou-
los succeeded in proving the Dehn Lemma, and it soon
became the centerpiece of a series of major developments
in the subject. One of special note occurred in 1968, when
F. Waldhausen proved that two knots are equivalent if and
only if certain algebraic data associated to the knots are
the same. The interplay between algebra and geometry
was essential to this work, and the connection was pro-
vided by Dehn’s lemma.

The late 1950’s through the 1970’s were also marked
by an extensive study of the classical knot invariants, and,
in particular, how properties
of the knot were reflected
in the invariants. For in-
stance, K. Murasugi proved
that if a knot can be drawn so
that the crossings alternate
from over to under, then the
coefficients of the Alexander
polynomial alternate in sign.
Figure 1.6 illustrates a non-
alternating knot diagram—
see how two successive over- Figure 1.6
crossings are marked. By the Murasugi theorem, it is
impossible to find an alternating diagram for this knot, as
it has Alexander polynomial 2t6 — 3t +¢* +¢3 +t2 — 3t +
2. Murasugi’s work also detailed relationships between

@3
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knot invariants and symmetries of knots, another major
topic in the subject. Figure 1.7 illustrates three 9-crossing
knots (94,917, and 933 in the appendix.) Two of the dia-
grams appear quite symmetrical, while the last is striking
in its asymmetry. Is it possible to deform the third knot
so that it too displays a similar symmetry?

>

Figure 1.7



8 KNOT THEORY

In a completely different direction, the investigation
of higher dimensional knots, such as knotted 2-spheres in
4-space, became a significant topic. In 1960 the subject
consisted of little more than a sparse collection of exam-
ples. By 1970 it had become a well-developed area of topol-
ogy. It also had become a significant source of questions
concerning classical knots.

Since 1970, knot theory has progressed at a tremen-
dous rate. J. H. Conway introduced new combinatorial
methods which, when combined with more recent work by
V. Jones, have led to vast new families of invariants. New
geometric methods have been introduced by W. Thurston
(hyperbolic geometry) and by W. Meeks and S. T. Yau
(minimal surfaces), and together these have provided sig-
nificant new insights and results. Finally, in 1988 C. McA.
Gordon and J. Luecke solved one of the fundamental prob-
lems in knot theory. Many of the methods of knot theory
focus not on the knot itself, but on the complement of
the knot in 3-space; Gordon and Luecke proved that knots
with equivalent complements are themselves equivalent.

Knot theory remains a
lively topic today. Many
of the basic questions, some
dating to Tait’s first paper in ( / N

the subject, remain open. At

the other extreme, the results
of recent years promise to
provide many new insights. \)

EXERCISES

1. If at a crossing point in

a knot diagram the crossing

is changed so that the section Figure 1.8
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that appeared to go over the other instead passes under,
an apparently new knot is created. Demonstrate that if
the marked crossing in Figure 1.8 is changed, the resulting
knot is trivial. What is the effect of changing some other

crossing instead?

N\

2. Figure 1.9 illustrates a
knot in the family of 3-
stranded pretzel knots; this
particular example is the
(5,—3,7) pretzel knot. Can
you show that the (p,q,r)-
pretzel knot is equivalent to
both the (g,r,p)-pretzel knot
and the (p,r,q)-pretzel knot?

Figure 1.9

3. The subject of knot theory has grown to encom-
pass the study of links, formed as the union of dis-

joint knots. Figure 1.10 il-
lustrates what is called the
Whitehead link. Find a de-
formation of the Whitehead
link that interchanges the
two components. (It will be
proved later that no defor-
mation can separate the two
components. )

4. For what values of (p,q,r)
will the corresponding pret-
zel knot actually be a knot,

&

Figure 1.10

and when will it be a link? For instance, if p=qg=1r = 2,
then the resulting diagram describes a simple link of three
components, “chained” together.
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5. Describe the general procedure for drawing the
(p,q)-torus knot. What happens if p and ¢ are not rel-

atively prime?

AN

Figure 1.11

6. The link in Figure 1.11
is called the Borromean link.
It can be proved that no de-
formation will separate the
components. Note, however,
that if one of the two compo-
nents is removed, the remain-
ing two can be split apart.
Such a link is called Brun-
nian. Can you find an exam-
ple of a Brunnian link with
more than 3 components?

(H. Brunn described interesting families of such examples

in 1892.)

7. The knots illustrated in Figure 1.12 were, until re-
cently, assumed to be distinct, and both appeared in many
knot tables. However, Perko discovered a deformation that
turns one into the other. Can you find it?

iy

@

Figure 1.12




CHAPTER 2:
WHAT IS A KNOT?

There are many definitions of knot, all of which capture
the intuitive notion of a knotted loop of rope. For each
definition there is a corresponding definition of deforma-
tion, or equivalence. This chapter will concentrate on one
pair of such definitions, and mention another. (Results at
the foundations of geometric topology relate the various
definitions. Such matters will not be presented here, and
do not affect the work that follows.) The goal for now is
to demonstrate how the notion of knotting can be given a
rigorous mathematical formulation, and to give the reader
a flavor of the problems and techniques that occur at this
basic level of the subject.

1 Wild Knots and Considering a pair of defini-
Unknottings tions that are not appropri-

ate, and seeing how they fail,

demonstrates some unexpected subtleties and the need for
precision and care in finding the right approach. One might
define a knot as a continuous simple closed curve in Eu-
clidean 3-space, R3. To be precise, such a curve consists
of a continuous function f from the closed interval [0,1] to

11
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R3 with f(0) = f(1), and with f(z) = f(y) implying one
of the three possibilities:

(1) =Y,

(2) z=0andy=1, or

3) z=1landy=0.

This is illustrated schematically in Figure 2.1.

Figure 2.1

Unfortunately, with this definition the infinitely knot-
ted loop illustrated in Figure 2.2 would be admitted into

Figure 2.2
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our studies. Such pathological examples are distant from
the intuitive notion of a knot and the physical knotting
that the theory is modelling, and so must be avoided.

Suppose for the moment that a definition similar to
that indicated above were suitable. How would the idea of
a deformation be captured? A natural choice would be to
say that a knot J is a deformation of K if there exists a
family of knots, K;, 0 <t <1, with Ko = K, K; = J, and
with K close to K, for t close to 8. Of course the idea of
knots being close would have to be defined as well.

Once again, an example indicates the difficulty of us-
ing a definition based on continuity. In Figure 2.3 several
steps of a deformation of a knot into an unknotted loop
are illustrated. Note that at every step of the deformation
the loop is a continuous simple closed curve. Somehow the
definition must rule out such deformations.

One remedy is to introduce differentiability into the
discussion. For instance, if the function f is required to
be differentiable, with unit velocity, the possibility of a
wild knot is eliminated; for the knot in Figure 2.3, the
tangent is varying rapidly near the wild point where the
small knots bunch up, and there is no continuous way to
define a tangent direction at that wild point. Introducing
differentiability into the definition of deformation is also
possible, but more difficult.

An alternative solution is to use polygonal curves in-
stead of differentiable ones. This approach avoids many
technical difficulties and at the same time eliminates wild
knotting, as polygonal curves are finite by nature. A theo-
rem relating the two approaches is proved in the appendix
of the text by Crowell and Fox, a good starting point for
readers interested in this aspect of the theory.
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-
-

Figure 2.3

2 The Definition of The simplest definitions in

a Knot knot theory are based on

polygonal curves in 3-space.

Essentially a knot is defined to be a simple closed curve
formed by “joining the dots.”

For any two distinct points in 3-space, p and g, let [p,q]
denote the line segment joining them. For an ordered set
of distinct points, (p1,p2,...,Pn), the union of the segments
[p1,p2], [P2,P3],.-,[Pn—1,Pn], and [pn,p1] is called a closed
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polygonal curve. If each segment intersects exactly two
other segments, intersecting each only at an endpoint, then
the curve is said to be simple.

DEFINITION. A knot is a simple closed polygonal
curve in R3.

Figure 2.4a illustrates the simplest nontrivial knot,
which is called the trefoil, drawn as a polygonal curve.
The unknot, or trivial knot, is defined to be the knot de-
termined by three noncollinear points, as illustrated in Fig-
ure 2.4b. (Note that picking a different set of three points
yields a different “unknot.” This ambiguity will be re-
solved in discussing deformations and equivalence, and in
the exercises.)

.4

(a) (b)
Figure 2.4

Knots are usually thought of, and drawn, as smooth
curves and not jagged ones. An informal way of dealing
with this is to view smooth knots as polygonal knots con-
structed from a very large number of segments. That a
smooth knot can be closely approximated by a polygonal
curve is intuitively clear. The formal way of dealing with
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this problem is to study the relationship between polyg-
onal and differentiable knots. Knots will often be drawn
smoothly in this book, but this is for aesthetic reasons, and
all the figures could have been drawn polygonally instead.

There is one important observation to be made about
the definition. A knot is defined to be a subset of 3-space,
the union of a collection of segments. Various choices of or-
dered sets of points can define the same knot. For instance,
cyclicly permuting the order of the points does not alter
the underlying knot. Also, if three consecutive points are
collinear, then eliminating the middle one does not change
the underlying knot. This last observation about eliminat-
ing points along segments leads to a useful definition.

DEFINITION. If the ordered set (p1,p2,...,pn) defines
a knot, and no proper ordered subset defines the same knot,
the elements of the set {p;} are called vertices of the knot.

Finally, even if one’s goal is to study only knots, links of
many components will arise.

DEFINITION. A link is the finite union of disjoint
knots. (In particular, a knot is a link with one component.)
The unlink is the union of unknots all lying in a plane.

Notice that the condition that the components of the
unlink lie in a single plane is essential; examples of non-
trivial links with each component unknotted have already
been described. As with the definition of the unknot, am-
biguities appear here; for instance, in the definition of the
unlink does it matter what plane is used? Following the
definition of equivalence presented in Section 3, these is-
sues can be addressed.
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EXERCISES

2.1. The ordering of the points {p;} used to define a knot
is essential. Show that by correctly changing the ordering
of the points, one might not get a knot at all. (Hint: with
the vertices reordered a closed curve will still result, but
is it necessarily simple?) Also, show that by changing the
ordering of the points {p;} defining the trefoil, the resulting
knot can be deformed into the unknot.

2.2. It is not clear from the definition that a knot has only

one set of vertices. Prove that in fact the vertices of a knot
form a well-defined set.

3 Equivalence of The next step is to give a

Knots, Deformations mathematical formulation of

the idea of deforming knots.

This is done with the notion of equivalence, which is in
turn defined via elementary deformations.

DEFINITION. A knot J is called an elementary defor-
mation of the knot K if one of the two knots is determined
by a sequence of points (p1,D2,...,Pn) and the other is de-
termined by the sequence (po,p1,p2,...,Pn), where (1) po is
a point which is not collinear with p; and p,, and (2) the
triangle spanned by (po,p1,pn) intersects the knot deter-
mined by (p1,p2,...,pn) only in the segment [p1,pn].

Here a triangle is the flat surface bounded by the
edges [po,plL [plapn]1 and [pn’pO]' It is defined forma.lly
asT ={zpo+yp1 +2pn |0< 2, 9, z,and c+y+2 = 1}.
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The second condition in the definition assures that in per-
forming an elementary deformation the knot does not cross
itself. Figure 2.5a illustrates an elementary deformation,
and 2.5b illustrates a deformation which is not permitted.
As examples have indicated, such crossings can change a
knot into a different type of knot. Of course, the point of
the definition is to make these ideas precise.

N\
G' -
~
(a)

(b)
Figure 2.5

Knots K and J are called equivalent if K can be
changed into J by performing a series of elementary de-
formations. More precisely:



WHAT Is A KNOT? 19

DEFINITION. Knots K and J are called equivalent if
there is a sequence of knots K = K, K,,...,K, = J, with
cach K; 1y an elementary deformation of K;, for i greater
than 0.

This notion of equivalence satisfies the definition of
an equivalence relation; it is symmetric, transitive, and
reflexive, three facts that the reader can verify.

Knot theory consists of the study of equivalence
classes of knots. For instance, proving that it is impossible
to deform one knot into another is the same as proving that
the two knots lie in different equivalence classes. Proving
that a knot is nontrivial consists of showing that it is not
contained in the equivalence class of the unknot.

TERMINOLOGY

It is usual in the subject to blur the distinction between a
knot and its equivalence class. For instance, rather than
say that a knot is equivalent to the unknot, one just states
that the knot is unknotted. Similarly, when it is said that
two knots are distinct, it is meant that the knots are in-
equivalent. This convention seldom can cause confusion,
but will be avoided in ambiguous situations.

EXERCISES

3.1. Suppose a knot lies in a plane, and bounds a convex
region in that plane. (Convex means that any segment
with endpoints in the region is entirely contained in the
region.) Prove that the knot is equivalent to a knot with
3 vertices. That is, describe how to construct a sequence
of knots, each an elementary deformation of the previous
one, starting with the convex planar knot and ending with
a knot having exactly 3 vertices. Hint: Apply induction
on the number of vertices.



20 KNOT THEORY

3.2. Suppose that K and J are unknots lying in the same
plane. (Recall that this means that K and J are each
determined by three noncollinear points.) Show that K
and J are equivalent by describing a method for finding
the appropriate sequence of elementary deformations.

3.3. Exercises 3.1 and 3.2 show that two convex knots in
a plane determine equivalent knots. This result is true
for nonconvex knots, and is called the Schonflies Theorem.
Prove the Schonflies theorem for planar knots with 4 and
5 vertices.

3.4. Is every knot with exactly 4 vertices unknotted?

3.5. Let K be a knot determined by points (p1,p2,...,Pn)-
Show that there is a number z such that if the distance
from p; to pj is less than z, then K is equivalent to the
knot determined by (p!,p2,...,pn). Similarly, show there
is a z such that every vertex can be moved a distance z
without changing the equivalence class of the knot. (These
are both detailed arguments in epsilons and deltas.)

3.6. Prove, using 3.5, that a knot can be arbitrarily trans-
lated or rotated by a sequence of elementary deformations.

3.7. Generalize the definition of elementary deformation,
and equivalence, to apply to links. (Your definition should
not permit one component to pass through another.)

4 Diagrams and Although a knot is a subset
Projections of space, all our work takes

place in a plane. The pictures

in this book all lie on a flat piece of paper and your practice
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is done on a flat blackboard or piece of paper as well. How
is it that a diagram on a piece of paper gives a well-defined
knot? This is answered by formalizing the notion of knot
diagram.

The function from 3-space to the plane which takes
a triple (z,y,z) to the pair (z,y) is called the projection
map. If K is a knot, the image of K under this projection
is called the projection of K. A projection of the figure-8
knot (knot 4, in the appendix) is illustrated in Figure 2.6.
It is possible that different
knots can have the same
projection. Once the curve
is projected into the plane,
it is no longer clear which
portions of the knot passed
over other parts. To rem-
cdy this loss of information,
gaps are left in the draw-
ings of projections to indi-
cate which parts of the knot
pass under other parts. Such Figure 2.6
a drawing is called a knot diagram. In this book all
the drawings of knots are really knot diagrams.

At this point the distinction between knots and equiv-
alence classes of knots appears. Many different knots can
have the same diagram, as the diagram indicates that cer-
tain portions of the knot pass over other portions, but not
how high above they pass. It turns out that this does not
matter! If two knots have the same diagram they are equiv-
alent. To state this formally as a theorem requires a more
careful study of projections.

Suppose that a knot has a projection as illustrated
in Figure 2.7a. If that knot is rotated slightly in space,
the resulting knot will have a projection as illustrated in
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Figure 2.7b! Such knot projections have to be avoided as
too much information has been lost in the projection.

(a) (b)
Figure 2.7

0O DEFINITION. A knot projection is called a regular
projection if no three points on the knot project to the same
point, and no vertex projects to the same point as any other
point on the knot.

There are two theorems that make regular projections
especially useful. The first states that if a knot does not
have a regular projection then there is an equivalent knot
nearby that does have a regular projection. The second
states that if a knot does have a regular projection then all
nearby knots are equivalent and also have regular projec-
tions. The notion of nearby is made precise by measuring
the distance between vertices.

0 THEOREM 1. Let K be a knot determined by the or-
dered set of points (p1,...,pn). For every number t > 0
there is a knot K’ determined by an ordered set (q1,...,qn)
such that the distance from q; to p; is less than t for all
1, K’ is equivalent to K, and the projection of K’ is regular.
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THEOREM 2. Suppose that K is determined by the
sequence (p1,...,Pn) and has a regular projection. There is
a number t > 0 such that if a knot K' is determined by
(g1,-.-,gn) with each g; within a distance of t of p;, then
K’ is equivalent to K and has a regular projection.

Knot diagrams are only defined for knots with regular
projections. The theorem relating knots to diagrams is the
following:

THEOREM 3. If knots K and J have regular projec-
tions and identical diagrams, then they are equivalent.

PROOF
One approach is the following. First arrange that K is
determined by an ordered sequence (p1,...p,) and J is de-
termined by the sequence (g1,...,¢5,) with the projection of
p; and ¢; the same for all . This may require introducing
extra points in the defining sequences for both knots.
Next perform a sequence of elementary deformations
that replace each p; with a g; in the defining sequence
for K. These moves are first applied to all vertices which
do not bound intervals whose projections contain crossing
points. Finally each crossing point can be handled. O

TERMINOLOGY

A knot diagram consists of a collection of arcs in the plane.
These arcs are called either edges or arcs of the diagram.
The points in the diagram which correspond to double
points in the projection are called crossing points, or just
crossings. Above the crossing point are two segments on
the knot; one is called an overpass or overcrossing, the
other the underpass or undercrossing. Notice that the
number of arcs is the same as the number of crossings.
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With Theorem 3 it is now possible to blur the dis-
tinction between a knot and its diagram. There is usually
no confusion created by not distinguishing a knot diagram
from an equivalence class of a knot. To be clear, though:
a knot is a subset of 3-space, knots determine equivalence
classes of knots, and knots with regular projections have
diagrams, which are drawings in the plane.

EXERCISES
4.1. Fill in the details of the proof of Theorem 3.

4.2. Sketch a proof of Theorem 1. (A proof can make use
of Exercise 6, Section 3. A projection is regular as long
as 1) no line joining two vertices is parallel to the vertical
axis, 2) no vertices span a plane containing a line parallel
to the vertical axis, and 3) there are no triple points in the
projection. Argue that the knot can be rotated slightly
to achieve conditions 1 and 2, and then deal with triple
points.)

4.3. Prove Theorem 2. The previous hint should help here.

4.4. Show that the trefoil knot can be deformed so that its
(nonregular) projection has exactly one multiple point.

5 Orientations Knots can be oriented, or, in-

formally, given a sense of di-

rection. Recall that a knot is determined by its (ordered)

set of vertices. If the ordered set of vertices is (p1,...,pn),

then, as noted earlier, any cyclic permutation of the ver-

tices gives the same knot. It is also true that reversing the
order of the vertices will yield the same knot.
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DEFINITION. An oriented knot consists of a knot and
an ordering of its vertices. The ordering must be chosen
so that it determines the original knot. Two orderings are
considered equivalent if they differ by a cyclic permutation.

The orientation of a knot is usually represented by
placing an arrow on its diagram. The connection with the
definition of orientation should be clear.

The notion of equivalence is easily generalized to the
oriented setting. If a knot is oriented, an elementary de-
formation results in a knot which is naturally oriented.
Hence, an elementary deformation of an oriented knot is
again an oriented knot.

DEFINITION. Oriented knots are called oriented
equivalent if there is a sequence of elementary deforma-
tions carrying one oriented knot to the other.

One of the hardest problems that arises in knot theory
is in distinguishing equivalence and oriented equivalence.
The first examples of knots which are equivalent but not
oriented equivalent were described by H. Trotter in 1963;
for example, the (3,5,7)-pretzel knot can be oriented in two
ways, and Trotter showed the resulting oriented knots are
not oriented equivalent, even though they are the same
when orientations are ignored.

Another related definition will be useful later.

DEFINITION. The reverse of the oriented knot deter-
mined by the ordered set of vertices (p1,...,Pn), is the ori-
ented knot K™ with the same vertices but with their order
reversed. An oriented knot K is called reversible if K and
KT are oriented equivalent. If K is not oriented, it is called
reversible if for some choice of orientation it is reversible.
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EXERCISES
5.1. Formulate a definition of oriented link.

5.2. Any oriented knot, or link, determines an unori-
ented link. Simply ignore the orientation. Given a knot,
there are at most two equivalence classes of oriented knot
that determine its equivalence class, ignoring orientations.
(Why?)

(a) What is the largest possible number of distinct ori-
ented n component links which can determine the
same unoriented link, up to equivalence? Try to con-
struct an example in which this maximum is achieved.
(Do not attempt to prove that the oriented links are
actually inequivalent. This will have to wait until
more techniques are available.)

(b) Show that any two oriented links which determine the
unlink as an unoriented link are oriented equivalent.

5.3. Explain why if an unoriented knot is reversible, then
for any choice of orientation it is reversible.

5.4. Show that the (p,p,q)-pretzel knot is reversible.

5.5. The knot 8,7 is the first knot in the appendix that is
not reversible, a difficult fact to prove. Find inversions for
some of the knots that precede it. Several are not obvious.

5.6. Classically, what has been defined here as the re-
verse of a knot was called the inverse. The change in
notation arose from high-dimensional considerations that
will be discussed in Chapter 9. The inverse is now de-
fined as follows. Given an oriented knot, multiplying the
z-coordinates of its vertices by —1 yields a new knot, K™,
called the mirror image, or obverse of the first. The in-
verse of K is defined to be K™".
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(a) How are the diagrams of a knot and its obverse and
inverse related?

(b) Given a knot diagram it is possible to form a new knot
diagram by reflecting the diagram through a vertical
line in the plane, as illustrated in Figure 2.8. What
operation on knots in 3-space does this correspond to?

D &

Figure 2.8

(c) Show that the operation described in part b) yields a
knot equivalent to the obverse of the original knot.






CHAPTER 3:
COMBINATORIAL TECHNIQUES

The techniques of knot theory which are based on the study
of knot diagrams are called combinatorial methods. These
techniques are usually easy to describe and yet provide
deep results. For instance, in this chapter such methods
will be used to prove that nontrivial knots exist and then
to demonstrate that there is in fact an infinite number of
distinct knots.

Combinatorial tools often appear as unnatural or ad
hoc. In many cases alternative perspectives, though more
abstract, can provide insights. One of the successes of al-
gebraic topology is to provide such perspectives, but in
some cases, the efficacy of combinatorial techniques re-
mains mysterious. Recent progress in combinatorial knot
theory will be described in Chapter 10.

1 Reidemeister Moves In what ways are diagrams

of equivalent knots related?
Clearly, even a single elementary deformation can have
a dramatic effect on the diagram. Some of the sim-
plest changes in a diagram that can occur when a knot
is deformed are illustrated in Figure 3.1. In the figure only

29
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that portion of the diagram where a change occurs is illus-

)=
>

7NN

Figure 3.1

Each of the three figures represents a pair of possi-
ble changes in a diagram; each operation is paired with
its inverse. These six simple operations which can be per-
formed on a knot diagram without altering the correspond-
ing knot are called Reidemeister moves . The key observa-
tion in combinatorial knot theory was made by Alexander
and Briggs:
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THEOREM 1. If two knots (or links) are equivalent,
their diagrams are related by a sequence of Reidemeister
moves.

PROOF

If you have already done some of the exercises showing
that different diagrams can represent the same knot then
this result should seem intuitively clear. In turning one
diagram into the other the only changes that you ever need
to make are these Reidemeister moves. The full proof is a
detailed argument keeping track of a number of cases, but
the main ideas are fairly simple.

Suppose that K and J represent equivalent knots, and
that both have regular projections. Then K and J are
related by a sequence of knots, each obtained from the next
by an elementary deformation. A small rotation will assure
that each knot in the sequence has a regular projection,
and thus the proof is reduced to the case of knots related
by a single elementary deformation.

Again after performing a slight rotation, it can be as-
sured that the triangle along which the elementary defor-
mation was performed projects to a triangle in the plane.
That planar triangle might contain many crossings of the
knot diagram. However, it can be divided up into many
small triangles, each of which contains at most one cross-
ing. This division can be used to describe the single el-
ementary deformation in a sequence of many small ele-
mentary deformations; the effect of each on the diagram
is quite simple. The proof is completed by checking that
only Reidemeister moves have been applied. O

EXERCISES
1.1. Show that the change illustrated in Figure 3.2 can be
achieved by a sequence of two Reidemeister moves.
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o

Figure 3.2

1.2. Find a sequence of Rei-

demeister moves that trans-

forms the diagram of the un- (\
knot drawn in Figure 3.3. /
Here is a more challenging \
exercise: What would be the /

least number of Reidemeister

moves needed for such a se-

quence? Can you prove that

this is the least number that

suffices?
Figure 3.3

2 Colorings The method of distinguishing

knots using the “colorability”

of their diagrams was invented by Ralph Fox. The proce-
dure is simple: A knot diagram is called colorable if each
arc can be drawn using one of three colors, say red (R),
yellow (Y), and blue (B), in such a way that 1) at least
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two of the colors are used, and 2) at any crossing at which
two colors appear, all three appear. Figure 3.4 illustrates
a coloring of a knot diagram. Exercise 2.1 is a quick prob-
lem, asking you to check which of the diagrams for knots
with 7 or fewer crossings, as illustrated in Appendix 1, are
colorable.

R R

OGN

Figure 3.4

Is it possible that some diagrams for a knot are col-
orable while others are not? Our first result in combinato-
rial knot theory is that the answer is no.

THEOREM 2. If a diagram of a knot, K, is colorable,
then every diagram of K is colorable.

Hence the following definition makes sense:

DEFINITION. A knot is called colorable if its diagrams
are colorable.

The proof of Theorem 2 is the model for most of the
proofs of later combinatorial results. But before giving
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it, one immediate consequence should be noted; nontrivial
knots exist! Clearly the unknot is not colorable because its
standard projection cannot be colored. It follows that any
colorable knot is nontrivial. Further consequences appear
in the exercises.

Proor
(Theorem 2) It is sufficient to show that if a Reidemeister
move is performed on the colorable diagram of a knot,
then the resulting diagram is again colorable. Hence, the
proof breaks into six steps, one for each Reidemeister move.
Each step consists of checking various cases and none is
difficult, although some are a bit tedious. One step is
presented here; the others are left to the exercises.
Suppose that Reidemeister move 2b is performed on
a colored knot diagram. It must be shown that the new
diagram is again colorable. There are two cases. In the
first, the arcs are colored with two (and hence three) colors,
as illustrated in Figure 3.5a. (Only the affected portions
of the knots are included in these illustrations.) The new
diagram can be colored as before, with the altered section
colored as in Figure 3.5b. As two colors still appear, the
resulting diagram is still colorable.

R Y R

\

e’

(a) (%)
Figure 3.5
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The second possibility is that both of the affected arcs
start out colored with the same color. In this case, after
performing the Reidemeister move the arcs can still be
colored with that same color and the rest of the diagram
can be colored as it was originally. All the requirements of
colorability are still satisfied.

Checking Reidemeister moves la, 1b, and 2a, are all
as simple as this. Moves 3a and 3b present a few more
cases to check. 0O

EXERCISES
2.1. Which of the knot diagrams with seven or fewer cross-
ings, as illustrated in Appendix 1, are colorable?

2.2. For which integers n is the (2,n)-torus knot in Figure
3.6a colorable? The knot illustrated in Figure 3.6b is called
the n-twisted double of the unknot, where n denotes the
number of twists in the vertical band. The trefoil results
when n = 1. What if n = —1? For which values of n is
the n-twisted double of the unknot colorable?

Figure 3.6
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2.3. Discuss the colorability of the (p,q,r)-pretzel knots.

2.4. (a) Prove the coloring theorem for Reidemeister move
la.

(b) How many cases need to be considered in proving The-
orem 1 for Reidemeister move 3a?

(c) Check each of these cases.
(d) Complete the proof of Theorem 1.

2.5. Given an oriented link of two components, J and K, it
is possible to define the linking number of the components
as follows. Each crossing point in the diagram is assigned a
sign, +1 if the crossing is right-handed and —1 if it is left-
handed. (A right-handed crossing is a crossing at which
an observer on the overcrossing, facing in the direction of
the overcrossing, would view the undercrossing as passing
from right to left. Right and left crossings are illustrated
in Figure 3.7.) The linking number of K and J, ¢k(K,J),
is defined to be the sum of the signs of the crossing points
where J and K meet, divided by 2.

A X

Figure 3.7
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(a) Use the Reidemeister moves to prove that the linking
number depends only on the oriented link, and not on
the diagram used to compute it.

(b) Figure 3.8 illustrates an oriented Whitehead link.
Check that it has linking number 0.

(c) Construct examples of links with different linking
numbers.

2.6. This exercise demon-
strates that the linking num-
ber is always an integer. -
First note that the sum used
to compute linking numbers

can be split into the sum
of the signs of the cross-
ings where K passes over J,

and the sum of the crossings

where J passes over K.
Figure 3.8

(a) Use Reidemeister moves to prove that each sum is
unchanged by a deformation.

(b) Show that the difference of the two sums is unchanged
if a crossing is changed in the diagram.

(c) Show that if the crossings are changed so that K al-
ways passes over J, the difference of the sums is 0.
(This link can be deformed so that K and J have dis-
joint projections.)

(d) Argue that the linking number is always an integer,
given by either of the two sums. (This is the usual def-
inition of linking number. The definition in Exercise
2.5 makes it clear that £k(K,J) = (k(J,K).)

2.7. The definition of colorability is often stated slightly
differently. The requirement that at least two colors are
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used is replaced with the condition that all three colors
appear.

(a) Show that the unlink of two components has a di-
agram which is colorable using all three colors and
another diagram which is colorable with exactly two
colors.

(b) Why is it true that for a knot, once two colors appear
all three must be used, whereas the same statement
fails for links?

(c) Explain why the proof of Theorem 2 applies to links
as well as to knots.

2.8. Prove that the Whitehead link illustrated in Figure
3.8 is nontrivial, by arguing that it is not colorable.

2.9. In this exercise you will prove the existence of an
infinite number of distinct knots by counting the number
of colorings a knot has.

If a knot is colorable
there are many different ways
to color it. For instance,

arcs that were colored red /-\
can be changed to yellow, yel-
low arcs changed to blue, and

blue arcs to red. The re-

quirements of the definition

of colorability will still hold.

There are six permutations of

the set of three colors, so any

coloring yields a total of six Figure 3.9
colorings. For some knots there are more possibilities.

(a) Show that the standard diagram for the trefoil knot
has exactly six colorings.



(COMBINATORIAL TECHNIQUES 39

(b) How many colorings does the square knot shown in
Figure 3.9 have?

(¢) The number of colorings of a knot projection depends
only on the knot; that is, all diagrams of a knot will
have the same number of colorings. Outline a proof
of this.

(d) Use the connected sum of n trefoils, illustrated in Fig-
ure 3.10, to show that there are an infinite number of
distinct knots.

Figure 3.10

3 A Generalization How can colorability be gen-

of Colorability, eralized? Is it possible to use

mod p Labelings  more than three colors to de-

scribe new methods of distin-

guishing knots? There are actually several ways to gen-

eralize colorability, the first of which is presented in this
section.

In describing the method of colorings in the previous

section, instead of labeling the arcs of the knot diagram
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with colors, three integers, 0,1, and 2, could have been
used. The condition on colorings at crossings translates
into the simple statement that if the overcrossing is labeled
z and the two other arcs y and 2, then the difference 2z —
y — 2 is divisible by 3, or, more succinctly, 2z —y— 2z =
0 (mod 3). (Check that this condition is equivalent to the
coloring condition.) A possible generalization immediately
appears:

DEFINITION. A knot diagram can be labeled mod p if
each edge can be labeled with an integer from 0 top — 1 such
that 1) at each crossing the relation 2z —y — z = 0 (mod p)
holds, where z is the label on the overcrossing and y and z
the other two labels, and 2) at least two labels are distinct.

Figure 3.11 illustrates a mod 7 labeling of a knot.

Figure 3.11

For reasons that will be made clear in the exercises,
p will be restricted to the odd primes. In Exercise 3.3
the reader is invited to check that whether or not a knot
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diagram can be labeled mod p depends only on the equiv-
alence class of the knot, so that Theorem 2 generalizes to
this new situation. Figure 3.12 illustrates one step; if Rei-
demeister move 2b is performed on a labeled diagram, the
resulting diagram can again be labeled.

T

N

e

Figure 3.12

THEOREM 3. (Labeling theorem) If some diagram for
a knot can be labeled mod p then every diagram for that
knot can be labeled mod p.

EXERCISES
3.1. Determine which knots with 6 or fewer crossings can
be labeled mod 5.

3.2. For what primes p can the trefoil knot diagram be
labeled mod p?

3.3. Prove Theorem 3 by showing that if any Reidemeis-
ter move is performed on a labeled diagram, the resulting
diagram can again be labeled.

3.4. Show that if all the labels of a knot that is labeled
mod 3 are multiplied by 5, the resulting labeling is a la~
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beling mod 15. This gives some indication as to why p is
restricted to the primes.

3.5. If p is 2, other difficulties come up. Explain why no
knot can be labeled mod 2. (Modulo 2, what does the
crossing relationship say?)

3.6. Check that the theory of labelings applies to links of
many components.

3.7. Show that the knots 4;, 7;, and 8;¢ are distinct by
using mod 5 and mod 7 labelings. (Find mod 5 and mod 7
labelings of 8;6.)

4 Matrices, Linear algebra simplifies the

Labelings, and problem of labeling knot di-

Determinants agrams; just as important is

the fact that, with the intro-

duction of matrices, many new knot invariants appear.

Some of these invariants are introduced here. These in-
variants are studied in greater depth in Chapter 7.

Here is an algebraic reduction of the problem. Given a
knot diagram, label each arc of the diagram with a variable,
say x;. At each crossing a relation between the variables
is defined: if arc x; crosses over arcs x; and zx, then 2z; —
zj —zx = 0 (mod p). A knot can be labeled mod p if there
is a mod p solution to this system of equations with not
all z; equal.

Whether or not a knot is colorable, or can be labeled
mod p, has now been reduced to a problem of linear al-
gebra, that of studying the solutions to a system of linear
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cquations. As usual in linear algebra, the use of matrices
will simplify the problem.

T1 x2
T3
a:C
Figure 3.13

For example, the knot in Figure 3.13 is drawn with its
arcs labeled and its crossings numbered. The correspond-
ing system of equations that needs to be solved is given by
the matrix below. The rows correspond to the equations
determined by each crossing, the columns to the variables
taken in order.

2 -1 -1 0 0
-1 0 2 -1 0
-1 0 0 2 -1

0 -1 0 -1 2

0 2 -1 0 -1

Standard techniques of linear algebra apply to solv-
ing systems of equations mod p as well as for finding real
or rational solutions. (Formally, for p prime the integers
mod p form a field.) Unfortunately, the added condition in
the present problem, that the solutions have at least two
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of the z; distinct, introduces a few subtleties that need to
be addressed before general results can be presented.

Two preliminary observations are needed. First note
that setting each z; = 1 yields a solution to the system of
equations. Second, observe that any two solutions can be
added together to yield another solution.

These remarks imply that if there is a solution with
not all entries equal, there is such a solution with z,, = 0.
(z, could be replaced with any other z; here.) Conversely,
a nontrivial solution with z,, = 0 results in a labeling of the
knot. Hence, a solution with not all z; equal corresponds to
a nontrivial solution to the system of equations determined
by the original matrix with its last column deleted.

It is easier to work with problems related to square
matrices, and fortunately the given problem can be re-
duced to this setting. This is done by showing that any
one of the equations is a consequence of the others. In
terms of the matrix, multiplying certain of the rows by —1
results in a matrix with its rows adding to 0.

The correct choice of
—1’s is not obvious; here is
the algorithm: Orient the

knot. At each crossing in \
the diagram put a dot to
the right of the overcrossing,

just before the crossing point. \

Now, count how many arcs of

the diagram must be crossed

by a path from the dot to a

point in the plane far from

the diagram. If an odd num- Figure 3.14

ber of arcs are crossed, then multiply the corresponding
row of the matrix by —1. It is fairly simple to show that
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the sum of the rows is now trivial. In Figure 3.14 the cross-
ings that correspond to rows that are multiplied by —1 are
marked.

The following result summarizes the discussion above.

THEOREM 4. There is an n X n matric corresponding
to a knot diagram with n arcs. Deleting any one column
and any one row yields a new matriz. The knot can be
labeled mod p if and only if the corresponding set of equa-
tions has a nontrivial mod p solution.

Of course whether or not the system of equations has a
nontrivial solution depends on the determinant of the ma-
lrix. A solution exists if the determinant is 0, or, working
mod p, if the determinant is divisible by p. Furthermore,
the number of solutions is determined by the mod p nullity
of the matrix.

(The nullity of a matrix is the dimension of the kernel
of the matrix, thought of as a linear transformation. More
algorithmically, any square matrix with entries in a field,
(mod p entries in the present case), can be diagonalized by
performing row and column operations; that is, by adding
multiples of rows or columns to other rows or columns re-
spectively. The number of 0’s on the diagonal (or entries
divisible by p if working mod p) is the nullity. With more
care, a square integer matrix can be diagonalized, using
only integer row and column operations. Performing this
integer diagonalization performs mod p diagonalizations
for all p simultaneously. The exercises illustrate these pro-
cedures.)

DEFINITION. The determinant of a knot is the abso-
lute value of the determinant of the associated (n—1) X
(n — 1) matriz constructed above.
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00 DEFINITION. The mod p rank of a knot is the
mod p nullity of the associated (n—1) x (n—1) matriz
constructed above.

Of course, for these two definitions to give well-defined
invariants, it must be proved that none of the choices in-
volved, of either the knot diagram or the ordering of the
labels on the arcs and crossings, affects the determinant or
mod p rank of the associated matrix.

0O THEOREM 5. The determinant of a knot and its
mod p rank are independent of the choice of diagram and
labeling.

PROOF
There are two parts to the proof. The first is purely linear
algebra, observing facts about the determinant and nullity
of matrices. The second calculates the effect of the choice
of labelings and the Reidemeister moves on the associated
matrix.

As far as the linear algebra goes, a needed result states
that if, for a square matrix, the sum of the rows and the
sum of the columns is 0, then if a row and column are
removed, the nullity (and the absolute value of the deter-
minant) of the resulting matrix does not depend on which
row and column were removed. A simpler result states
that if the matrix is changed by adding a new row and
column, each containing all 0’s except for a single 1 on the
diagonal, then the nullity and determinant are unaffected.

The rest of the argument checks the effect of the Rei-
demeister moves on the associated matrix. For example,
Reidemeister move 2a introduces two new rows and two
new columns. Two of the new columns result from split-
ting one of the old arcs into two, and hence the sum of
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those two columns has entries determined by the one old
column. A few row and column operations show that the
new matrix can be changed into the old, with two new
rows and columns added, each of which has a single +1 in
it. The full argument for this and the other Reidemeister
moves, is left to the reader. D

TORSION INVARIANTS

The determinant and ranks are captured by stronger in-
variants. It is relatively easy to diagonalize a matrix when
working mod p; any nonzero entry can be used to clear
out a row and column. Diagonalizing over the integers is
harder, though possible, as is proved in most modern alge-
bra texts in the classification of abelian groups. The proof
uses the Euclidean algorithm. The typical result states
that a square integer matrix can be diagonalized so that
cach entry on the diagonal divides the next entry. If the
matrix associated to a knot is diagonalized in this way, the
resulting diagonal entries are called the torsion invariants
of the knot. Their product is the determinant of the knot,
and the number of entries which are divisible by p is the
mod p rank of the knot.

The proof that these are well-defined knot invariants
will not be given. The best approach relies on the theory
of abelian groups. The matrix associated to a knot can be
viewed as a presentation matrix for an abelian group. The
various alterations in the matrix do not affect the group so
determined, and the torsion invariants are just the torsion
invariants of this group.

EXERCISES

4.1. For each knot with 6 or fewer crossings find the asso-
ciated matrix, and its determinant. In each case, for what
p is there a mod p labeling?
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4.2. The knots 8;8 and 924 both have determinant 45.
Check that one has a mod 3 rank of 1, while the other
has a mod 3 rank of 2. The knots 83 and 949 both have
determinant 25. Compute their mod 5 ranks.

4.3. Prove the linear algebra results stated in the proof of
Theorem 5.

4.4. Because the unknot has particularly simple diagrams,
the arguments given above really need to be modified
slightly. The two diagrams for the unknot that cause diffi-
culties are the diagram with no crossings, and the diagram
with exactly one crossing. What goes wrong in these cases?
Why don’t these problems occur in other situations? How
would you correct for these minor problems? (Define the
determinant and nullity of a 0 x 0 matrix to be 1.)

4.5. Prove that the determinant of a knot is always odd.
(See Exercise 5 of the previous section, relating to mod 2
labelings. Also, this result does not apply for links of more
than one component.)

4.6. Show that if a knot has mod p rank n, then the number
of mod p labelings is p(p™ — 1).

5 The Alexander In the previous section it was
Polynomial seen that the simple notion of

colorability leads to a study

of determinants of matrices. The following description of
the Alexander polynomial greatly extends the use of ma-
trices and determinants. In this case, rather than work
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with entries that are integers the entries of the matrix are
polynomials.

Alexander’s original description was based on label-
ing the regions in the plane bounded by the arcs of the
diagram, and Reidemeister was the first to give a presen-
tation focusing on the arcs. Since then, many alternative
definitions have been found. Chapter 10 provides a mod-
ern viewpoint, one that is quite simple, and that provides
access to many new invariants.

To compute the Alexander polynomial of a knot,
Ak (t), first pick an oriented diagram for K. Number the
arcs of the diagram, and separately number the crossings.
Next, define an n x n matrix, where n is the number of
crossings (and arcs) in the diagram, according to the fol-
lowing procedure:

If the crossing numbered £ is right-handed with arc i
passing over arcs j and k, as illustrated in Figure 3.15a,
cnter a 1 —t¢ in column 7 of row £, enter a —1 in column
j of that row, and enter a ¢ in column %k of the row. If
the crossing is left-handed, as illustrated in Figure 3.15b,
enter a 1 —t in column i of row ¢, enter a ¢ in column j
and enter —1 in column k of row £. All of the remaining
entries of row £ are 0. (An exceptional case occurs if any of
i, j, or k are equal. In this exceptional case, the sum of the
entries described above is put in the appropriate column.
For instance, if j = k for some left-handed crossing, enter
—141t in column j. What if j = k at a right-handed
crossing?)

DEFINITION. The (n—1)x (n—1) matriz obtained
by removing the last row and column from the n x n ma-
triz just described is called an Alexander matriz of K. The
determinant of the Alexander matriz is called the Alexan-
der polynomial of K. (The determinant of a 0 x 0 matric
is defined to be 1.)
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Unfortunately, this polynomial depends on the choice
of the original diagram as well as on the other choices in-
volved in its description. That dependence is captured by
the following theorem.

Figure 3.15

0O THEOREM 6. If the Alexander polynomial for a knot
is computed using two different sets of choices for diagrams
and labelings, the two polynomials will differ by a multiple
of £t*, for some integer k.

For example, applying this procedure to the trefoil
yields the polynomial t2 —¢+ 1. Another set of choices
might give —t4 + 3 — 2. See below.

SKETCH OF PROOF

The argument is more detailed than, but quite similar
to, the proof of Theorem 5. With some care, the reader
should be able to check the effect of performing Reidemeis-
ter moves on the Alexander matrix. The complete proof
includes one new difficult step; analyzing the effect of a
change of orientation. It will be shown that the Alexander
polynomial of the reverse of a knot K is obtained from
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the Alexander polynomial of K by substituting ¢t~ for ¢
and multiplying by an appropriate power of ¢, and per-
haps multiplying by —1. (See Exercise 5.7.) Hence, the
independence of the Alexander polynomial on orientation
follows from its symmetry; replacing ¢ with £~! returns the
same polynomial multiplied by some power of ¢. This sym-
metry property will be discussed in Chapter 6. (Alexander
was unable to find a proof; a complete argument was first
given by Seifert.)

EXAMPLES

The trefoil knot provides

the simplest example of a
z1  knot with nontrivial Alexan-

2 der polynomial. Figure 3.16
indicates a labeling of the
€3 arcs and crossings. The as-
sociated matrix is:
1-t -1 t
t 1-t -1
Figure 3.16 -1 t 1-t

Deleting the bottom row and the last column gives a 2 x 2
Alexander matrix with determinant #2 — ¢+ 1.

Consider a harder example, the (2,n)-torus knot,
shown in Figure 3.17. If the diagram is labeled as was
done for the trefoil, the Alexander polynomial is given as
the determinant of the (n — 1) X (n — 1) matrix

1-t -1 0 0 0
¢ 1-t¢ -1 0 0
0 ¢ 1-t -1 0

: 1-t -1

0 0 ¢ 1—t¢
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Clearly, to compute the exact
determinant here would take

2 a fairly detailed inductive ar-
8 gument. (The result turns
)\ out to be (t"+1)/(t+1).)

Without actually computing

\ the determinant it is easily

( proved that for different pos-

itive n the Alexander poly-

nomials are distinct. Note

first that the coefficient of the

Figure 3.17 lowest degree term, the con-

stant term, is the determinant of the matrix obtained by

setting ¢ = 0. The result is 1. The highest degree term is

found by taking the determinant of the matrix containing

only the ¢ terms of the matrix above; that is remove all the
+1's. The resulting determinant is t*~1.

Hence the Alexander polynomial of the (2,n)-torus
knot is of degree exactly n — 1. In particular, these knots
form an infinite family of distinct knots, all of which are
distinguished by the Alexander polynomial.

EXERCISES

5.1. Compute the Alexander polynomial for several knots
in the appendix.

5.2. Relate the value of the Alexander polynomial of a knot
evaluated at —1 to the determinant of the knot, defined in
the previous section.

5.3. Check that Reidemeister move 1a does not change the
Alexander polynomial.

5.4. It is possible to construct knots with the same poly-
nomial, but which can be distinguished by their mod p
ranks for some p. Compute the polynomials of 8;5 and 924
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to check that they are identical. In Exercise 4.3 of this
chapter these knots were distinguished using the mod 3
ranks.

5.5. Show that the knot
in Figure 3.18 has Alexan-
der polynomial 1. (This is
one of only two knots with
11 or fewer crossings that
has trivial polynomial, other
than the unknot.) Use Ex-

-~
crcise 5.2 to argue that the /\/J—_‘)
knot cannot be distinguished v

from the unknot using label-

ings. Stronger algebraic tech-

niques (Chapter 5) or combi- Figure 3.18

natorial tools (Chapter 10) can be used to prove it is non-
trivial.

5.6. Prove that a knot and its mirror image, as illustrated
in Figure 3.19, have the same polynomial. (Hint: Label
the mirror image in the obvious way, but reverse its orien-
tation.)

D

Figure 3.19
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5.7. Show that the Alexander polynomial of K with its ori-
entation reversed is obtained from the polynomial of K by
substituting ¢! for ¢, and multiplying by the appropriate
power of ¢, and perhaps changing sign.




”

CHAPTER 4:
GEOMETRIC TECHNIQUES

Consider the surface drawn in Figure 4.1. It is built from a
disk by attaching two twisted bands. Note that the bound-
ary, or edge, of the surface is a knotted curve. In fact, the
boundary is a trefoil knot.

Figure 4.1

By studying the surface it is possible to learn more
about the trefoil knot. In general, the term geometric tech-
niques refers to the methods of knot theory that are based
on working with surfaces. The use of these methods is mo-
tivated by a theorem stating that for every knot there is
some surface having that knot as its boundary. An impor-
tant application, on which this chapter ends, is the prime
decomposition theorem for knots.

55
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The first section of this chapter presents the basic def-
inition of surface. The discussion corresponds closely to
that of Chapter 2 where knot is defined. Naturally the def-
inition is more technical. For a knot the interest is entirely
in its placement in space; a surface has additional struc-
ture which is independent of its placement. For instance,
the surface in Figure 4.1 is clearly different from a disk.
The concept of internal, or intrinsic, properties of surfaces
is made precise with the notion of homeomorphism, that
is also described in Section 1.

Section 2 presents the fundamental theorems concern-
ing surfaces. These results completely classify surfaces in
terms of intrinsic properties. Once this internal structure
of surfaces is understood the focus can shift to the place-
ment of surfaces in space and to the knotted boundaries of
surfaces. Section 3 begins the application of surface theory
to knot theory; it is proved that every knot is the bound-
ary of some surface. Sectioms 4 and 5 address the prime
decompostion theorem, with Section 4 devoted to building
the tools of the proof and Section 5 outlining the details
of the argument.

1 Surfaces and As with knots, it is possi-

Homeomorphisms ble to define a surface using

the notion of differentiability.

Again, a simpler working definition can be given using
polyhedra.

Any 3 noncollinear points in 3-space, p;, p2, and ps,

form the vertices of a unique triangle. That triangle is
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defined to be the set of points
{zpr +yp2+2p3 |z+y+2=1,2,9, 2 >0},

where each p; is thought of as a vector in R3. The union
of a finite collection of triangles is called a polyhedral sur-
face if: (1) each pair of triangles is either disjoint or their
intersection is a common edge or vertex, (2) at most two
triangles share a common edge, and (3) the union of the
edges that are contained in exactly one triangle is a disjoint
collection of simple polygonal curves, called the boundary
of the surface. This third condition rules out such possibil-
ities as a surface being the union of exactly two triangles
meeting at a vertex. (In this case the union of the edges
contained in exactly one triangle would be all six edges;
these form two unknots meeting in the common vertex—
they are not disjoint.) Figure 4.2 illustrates a simple poly-
hedral surface, a planar square with a square hole in its
center. It is illustrated as the union of a collection of tri-
angles.

Figure 4.2

Surfaces will be drawn smoothly. Any smooth surface
can be closely approximated by a polyhedral surface, but
as the number of triangles required can be extremely large,
it is easier to leave that triangulation out of the illustra-
tion. The details of the relationship between smooth and
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polyhedral surfaces is part of the foundational material of
geometric topology.

ORIENTATION

The intuitive approach to orientability states that a surface
is orientable if it is two-sided. The Mobius band is the
standard example of a nonorientable surface. In calculus,
a surface is called orientable if there is a nowhere vanishing
vector field normal to the surface. For polyhedral surfaces
there is a simple definition which corresponds to both the
intuitive idea and the formal definition given in calculus.

0O DEFINITION. A polyhedral surface is orientable if it is
possible to orient the boundary of each of its constituent
triangles in such a way that when two triangles meet along
an edge, the two induced orientations of that edge run in
opposite directions.

A surface can be triangulated, that is, described as
the union of triangles, in many different ways, and the def-
inition of orientability appears to depend on the choice of
triangulation. However, whether or not a surface can be
oriented is actually independent of the choice of triangula-
tion.

HOMEOMORPHISM

A notion of deformation of polyhedral surfaces can be given
in much the same way as was done for knots. An impor-
tant observation is that, although one surface might not be
deformable into a second surface, the two might be intrin-
sically the same; that is, they are indistinguishable with-
out reference to how they sit in space. For example, the
number of boundary components of a surface is intrinsic;
an inhabitant of the surface could determine this number.
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However, whether or not the boundary is knotted can only
be seen from a three-dimensional perspective.

This idea of intrinsic equivalence is formally defined as
homeomorphism. Surfaces F and G in 3-space are called
homeomorphic if there is a continuous function with do-
main F and range G which is both one-to-one, and onto.
For polyhedral surfaces there is an alternative definition.
Note that there are many ways that a triangle can be sub-
divided into smaller triangles; a few such subdivisions are
illustrated in Figure 4.3. Triangulations of surfaces can
similarly be subdivided so as to yield finer triangulations.

Figure 4.8

DEFINITION. Polyhedral surfaces are called homeo-
morphic if, after some subdivision of the triangulations of
each, there is a bijection between their vertices such that
when three vertices in one surface bound a triangle the cor-
responding three vertices in the second surface also bound
a triangle.

Determining whether or not two surfaces are home-
omorphic can be difficult. It might first come as a sur-
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(W‘i}@j X

Figure 4.4

prise that the surfaces illustrated in Figure 4.4 are homeo-
morphic. (In the illustrations surfaces will usually not be
shaded any more.)

A homeomorphism from one to the other is given by
the map that cuts the first along the dotted line, unknots
and untwists the band, and then reattaches it. The map
is easily seen to be one-to-one and onto. Continuity fol-
lows from the fact that points that are close together on
the original band are mapped to close points on the image
band. Notice that this homeomorphism does not preserve
the knot type of the boundary! In a case such as this it
would be extremely complicated to write the map down ex-
plicitly in terms of coordinates. Triangulating the surfaces
and finding the bijection would be completely unmanage-
able. In the next section tools are developed that greatly
simplify the use of surfaces.

EXERCISES

1.1. Show that the boundary of the surface illustrated in
Figure 4.1 is the trefoil knot.

1.2. The surface in 4.1 is homeomorphic to the same sur-
face with the bands untwisted. Why? By comparing their
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boundaries, show that the surface with its bands twisted
cannot be deformed into the one with untwisted bands.

1.3. Given a knot diagram, it is possible to construct a
surface by “checkerboarding” the plane. Figure 4.5 shows
this for two diagrams of the trefoil. Each surface was con-
structed by darkening in alternate regions of the plane de-
termined by the knot projection. The first surface in 4.5
is nonorientable. (If you start on the top of the surface
and travel around it once, you have gone through three
twists, and hence finish on the other side.) The other
surface is orientable. Redraw it using two colors to dis-
tinguish the two sides. Which of the diagrams for knots of
7 or fewer crossings in the Appendix result in orientable
surfaces when checkerboarded?

Figure 4.5

2 The Classification Several connected orientable
of Surfaces surfaces without boundary

are illustrated in Figure 4.6.

Associated to these surfaces is an integer called the genus
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of the surface, which roughly counts the number of holes.
It turns out that for any oriented surface there is an asso-
ciated number called the genus.

o O

Figure 4.6

A theorem, called the classification of surfaces, im-
plies that connected oriented surfaces without boundary are
homeomorphic if and only if the they have the same genus.
(Recall once again that homeomorphic surfaces need not
be deformable into each other in 3-space.) A more general
classification of surfaces applies to surfaces with boundary.

EULER CHARACTERISTIC AND GENUS
The Euler characteristic is an easily defined invariant of
a polyhedral surface. Its definition is stated in terms of
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a specific triangulation, and a basic result, usually proved
using algebraic topology, says that its value is independent
of choice of triangulations. Consequently, the Euler char-
acteristics of homeomorphic surfaces are equal. The Euler
characteristic and genus are difficult to compute from the
definitions alone. The following results greatly simplify
their calculation.

DEFINITION. If a polyhedral surface S is triangulated
with F triangles, and there are a total of E edges and V
vertices in the triangulation, then the Euler characteristic
is given by x(S)=F—-E+V.

For example, in the octahedron illustrated below,
there are 8 faces, 12 edges, and 6 vertices. Therefore its
Euler characteristic is 8 — 1246 = 2.

Figure 4.7

The genus of a surface is defined in terms of its Euler
characteristic. Initially, the definition appears to introduce
unnecessary algebra, but many simplifications will derive
from it.
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0O DEFINITION. The genus of a connected orientable sur-
face S is given by

9(8) = w,

where B is the number of boundary components of the sur-
face.

0O THEOREM 1. If two surfaces intersect in a collection of
arcs contained in their boundary, the Euler characteristic
of the union is the sum of their individual Euler charac-
teristics minus the number of arcs of intersection.

PROOF

The basic idea of the proof is simple. Suppose that each arc
of intersection is a single edge of a triangle on each surface.
Then the triangulations of the surfaces piece together to
give a triangulation of the union. The count that is used to
compute the Euler characteristic of each surface separately
gets a contribution of 1 from each edge of intersection (—1
for the edge, and +2 for its endpoints.) Hence for the sum
of the two Euler characteristics there is a contribution of
+2 from each edge of intersection. However, in the union
there is a contribution of only +1 from each edge. The
result follows.

If each arc is not a single edge of a triangle, it can
be arranged to be the union of edges, after subdividing.
Again it turns out that the contribution of each arc toward
the total Euler characteristic is +1, and the rest of the
argument is the same. a
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EXAMPLE

Many of the surfaces that arise are formed as disks with
twisted bands added. (See Figures 4.1 and 4.4.) As the
Euler characteristic of a disk is 1 (compute it for a single
triangle), and a band is just an elongated disk, the Euler
characteristic of a single disk with bands added is

(1 + #(bands)) — 2(#(bands)) = 1 — #bands.

(Each band contributes two arcs of intersection.) If
the surface is formed by adding bands to a collection of
disjoint disks, the resulting surface has Euler characteristic
(#disks) — (#bands).

COROLLARY 2. If two connected orientable surfaces
intersect in a single arc contained in each of their bound-
aries, the genus of the union of the two surfaces is the sum
of the genus of each.

PROOF

Express the Euler characteristic in terms of the genus and
apply Theorem 1. Note that one boundary component is
lost in forming the union. Exercise 4.3 asks for the de-
tails. O

Theorem 3 follows from a calculation similar to that
of Theorem 1:

THEOREM 3. If a connected orientable surface is
formed by attaching bands to a collection of disks, then
the genus of the resulting surface is given by

(2 — #tdisks + #bands — #boundary components)/2.

One more result of this sort will be needed later on.
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0 THEOREM 4. If two surfaces intersect in a collection of
circles contained in the boundary of each, the Euler char-
acteristic of their union is the sum of their Euler charac-
teristics.

PROOF

The argument is similar to that of Theorem 1. In com-
puting the Euler characteristic of a surface, each bound-
ary component contains an equal number of edges and
vertices of the triangulation. Hence, it contributes 0 to
the total Euler characteristic. The same is true for the
union. 0

CLASSIFICATION THEOREMS

In knot theory the main interest in surfaces concerns those
with boundary. Hence, the statements of the classification
theorems are restricted to this setting. The first part of
the classification gives a family of standard models for sur-
faces. The second gives the homeomorphism classification
of these models.

O THEOREM 5. (Classtfication I) Every connected sur-
face with boundary is homeomorphic to a surface con-
structed by attaching bands to a disk.

SKETCH OF PROOF

The proof of this theorem is technical, and the details ap-
pear in the references. Here is the overall idea. Fix a
triangulation of the surface. A small neighborhood of each
vertex forms a disk. Thin neighborhoods of the edges form
bands joining the disks together. Hence, a neighborhood of
the edges is homeomorphic to a union of disks with bands
added. Two steps remain. The more difficult one shows
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that adding the faces has the same effect as not attaching
certain of the bands. The other one shows that the num-
ber of disks can be reduced to one, and is detailed in the
exercises. (m]

THEOREM 6. (Classification IT) Two disks with bands
attached are homeomorphic if and only if the following
three conditions are met:

(1) they have the same number of bands,
(2) they have the same number of boundary components,
(3) both are orientable or both are nonorientable.

EXAMPLE

The surface in Figure 4.8a consists of two disks joined
together by three twisted bands. The boundary is the
(5,—3,7)-pretzel knot. If that surface is deformed by push-
ing in a narrow strip through the center band, the result-
ing surface can be further deformed to appear as in Figure
4.8b.
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EXERCISES
2.1. Use Theorem 3 to compute the genus of the surface
illustrated in Figure 4.9 below.

K

Figure 4.9

2.2. Provide the details of the proof of Theorem 3.
2.3. Prove Corollary 2.

2.4. Use Theorem 5 to prove that the only genus 0 surface
with a single boundary component is the disk.

2.5. Generalize the construction illustrated in Figure 4.8
to arbitrary pretzel knots. For what values of p, ¢, and r,
is the surface orientable?

2.6. By the classification of surfaces, the punctured torus
in Figure 4.10a can be deformed into a disk with bands
attached. Find a deformation into the disk with two bands
illustrated in Figure 4.10b. (The punctured torus has a
subsurface, which is outlined. Your deformation should
consist of two steps. First, deform the entire surface onto
the subsurface; then, deform the subsurface to appear as
the disk with bands added.)
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2.7. If a surface consists of two disks with a single band
joining them, it is homeomorphic to a single disk with no
bands attached. Based on such an observation argue that
any connected surface which is built by adding bands to a
collection of disks can in fact be built starting with only
one disk. (This observation is of practical importance: The
surfaces that knots bound will initially be constructed from
several disks. Calculations of knot invariants coming from
surfaces are much easier if the surface is described using
only one disk.)

2.8. Prove that the genus of a surface is nonnegative by
using induction on the number of bands.

(a) (b)
Figure 4.10

2.9. Prove that the genus of an orientable surface is an in-
teger. (Apply induction on the number of bands, and check
the effect of adding an (oriented) band on the number of
boundary components.

2.10. Prove that every connected orientable surface is
homeomorphic to a surface of the type illustrated in Fig-
ure 4.11. (Compute the genus and number of boundary
components, and then apply Theorem 6.)
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Figure 4.11

3 Seifert Surfaces and The main theorem of this sec-

the Genus of a Knot tion states that every knot is

the boundary of an orientable

surface. Consequently, geometric methods can be applied

to the general study of knots and not just to particular
examples.

THEOREM 7. Every knot is the boundary of an ori-
entable surface.

PRrOOF
The proof consists of an explicit construction first de-
scribed by Seifert. An orientable surface with a given knot
as its boundary is now called a Seifert surface for the knot.
The construction begins by fixing an oriented diagram
for the knot. Beginning at an arbitrary point on an arc,
trace around the diagram in the direction of the orienta-
tion. Any time a crossing is met, change arcs along which
you trace, but do so in such a way that the tracing con-
tinues in the direction of the knot. If at some point you
start retracing your path, go to an untraced portion of the
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diagram and begin tracing again. Figure 4.12 illustrates
the result of this procedure for a particular knot.

R O
K &

The result of this procedure is a collection of circles,
called Seifer* circles, drawn over the diagram. These cir-
cles can now be used to construct an orientable surface, as
follows.

Each of the circles is the boundary of a disk lying in
the plane. If any of the circles are nested, lift the inner
disks above outer disks, according to the nesting.

To form the Seifert surface connect the disks together
by attaching twisted bands at the points corresponding
to crossing points in the original diagram. These bands
should be twisted to correspond to the direction of the
crossing in the knot. Figure 4.13 illustrates the final sur-
face if this algorithm is applied to the knot in Figure 4.12.

It should be clear that the resulting surface has the
original knot as its boundary, that it is orientable is not
hard to prove either. (See Exercise 3.3.) Many different
surfaces can have the same knot as boundary; stated dif-
ferently, a knot can have many Seifert surfaces. |
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O DEFINITION. The genus of a knot is the minimum
possible genus of a Seifert surface for the knot.

Figure 4.13

For example, Figure 4.1 shows that the trefoil bounds
a surface of genus 1. On the other hand, it cannot bound
a surface of genus 0, that is a disk, because then it would
be unknotted, which is not the case.

A warning is called for here. It can be quite difficult
to compute the genus of a knot. The genus of the surface
produced by Seifert’s algorithm depends on the diagram
used, and, more importantly, Seifert’s algorithm will not
always yield the minimum genus surface! Even with this
difficulty the genus is a powerful tool for studying knots.

EXERCISES

3.1. The knot in Figure 4.1 bounds a surface of genus 1,
as drawn. What genus surface results if Seifert’s algorithm
is used to construct a Seifert surface starting with the di-
agram of the knot given in Figure 4.17

3.2. Does the surface constructed by Seifert’s algorithm
depend on the choice of orientation of the knot? What if
the procedure was used on a link instead?
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3.3. Why does Seifert’s algorithm always produce an ori-
entable surface?

3.4. In applying Seifert’s algorithm, a collection of Seifert
circles is drawn. Express the genus of the resulting surface
in terms of the number of these Seifert circles and the
number of crossings in the knot diagram.

3.5. A double of a knot K is constructed by replacing K
with the curve illustrated in Figure 4.14a. Figure 4.14b
illustrates a double of the trefoil knot. The number of
twists between the two parallel strands is arbitrary. Show
that doubled knots have genus at most 1.

(a) (b)
Figure 4.14

4 Surgery on Surfaces As discussed before,, Seifert

surfaces can be very compli-
cated. This section presents surgery, a method for sim-
plifying surfaces. All the surfaces that occur later are ori-
entable, and only that case will be described.
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Underlying the constructions that follow are two ob-
servations. The first is that if two surfaces intersect along
intervals, or circles, contained in their boundaries, then
the union of the surfaces is again a surface. In the pre-
vious section the effect of such constructions on the Euler
characteristic and genus was studied. Secondly, note that
if one surface is contained in another, and the boundaries
are disjoint, then removing the interior of the smaller from
the other surface results in a new surface. For example,
removing a disk from the interior of a surface results in a
surface with one more boundary component. (This con-
struction is sometimes called puncturing the surface.)

SURGERY

The process of cutting out pieces of a surface and pasting
on other surfaces forms the basic operation of surgery. The
initial set-up is the following. F' is a surface in 3-space and
D is a disk in 3-space. The interior of D is disjoint from
F and the boundary of D lies in the interior F. This is all
illustrated in Figure 4.15.

Figure 4.15

The construction of a new surface proceeds as follows.
Remove a strip, or annulus, on F' along the circle where
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F and D meet. The new surface has two more boundary
components than F. To each of these boundary compo-
nents attach a disk which is parallel to the disk D. F
has been transformed into a new surface by removing one
annulus and adding two disks.

DEFINITION. This procedure is referred to as perform-
ing surgery on F along D.

The effect of surgery on the surface in Figure 4.15 is
illustrated below. Note that if the boundary of D had been
a different curve on F', then the surface that results from
surgery might have had two components. In such cases the
curve is called separating.

Figure 4.16

What is the effect of surgery on the genus of F'? There
are two cases to consider. In the first case the new surface
has one component. In the second it has two.

THEOREM 8. If surgery on a connected orientable
surface, F, results in a connected surface, F’, then
genus(F') = genus(F)—1. If surgery results in a sur-
face with two components, F' and F”, then genus(F) =
genus(F') + genus(F").
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PROOF

The proof proceeds by computing the effect of the two
steps in surgery on the Euler characteristic of the surface.
The Euler characteristic of an annulus is 0. Therefore,
by Theorem 4, removing the annulus has no effect on the
Euler characteristic of the surface.

The Euler characteristic of a disk is 1, so by Theorem 4
the effect of adding on the two disks is to increase the Euler
characteristic by 2. Hence, the overall effect of surgery is
to increase the Euler characteristic by 2. It follows from
the formula for the genus of a connected surface that the
genus is then decreased by 1.

In the case that the original surface F' is split into
two surfaces, F' and F", the calculation is as follows. Let
B,B’, and B” be the number of boundary components
of F,F’, and F”, respectively. Note that B = B’ + B".
Hence:

genus(F') + genus(F")
= (2—x(F')-B')/2+(2-x(F") - B")/2
= (4= x(F') - x(F") - B)/2
= (4— (x(F)+2)—-B)/2
= genus(F). (]

5 Connected Sums of The connected sum of knots

Knots and Prime has already appeared in the

Decompositions exercises. It is now time

formally to define this

construction. The theory of prime knots and the prime
decomposition theorem can then be presented.
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Suppose that a sphere in 3-space intersects a knot, K,
in exactly two points, as illustrated in Figure 4.17. This
splits the knot into two arcs. The endpoints of either of
those arcs can be joined by an arc lying on the sphere.
Two knots, K; and K>, result.

Figure 4.17

DEFINITION. In the situation above K is called the
connected sum of K, and Kz, denoted K = K #K>.

Given two knots, K; and K», it is easy to construct
a knot K such that K = K #K,. Surprisingly, K is not
determined by K; and K. Examples illustrating the diffi-
culty are hard to construct, but the nature of the problem
appears with a discussion of orientation.

If the original knot K is oriented, then both K; and
K, are naturally oriented. Conversely, if K; and K, are
oriented knots it is possible to find a unique oriented knot
K such that K = K #K, as oriented knots. To come
up with a well-defined operation for which the equiva-
lence classes of K; and K determines the equivalence class
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of K #K, it is actually necessary to work with oriented
knots. For instance, it can be shown that if an oriented
knot K is distinct from its reverse, then the oriented con-
nected sum of K with itself is distinct from the oriented
connected sum of K with its reverse; that is, distinct even
if orientations are ignored.

With connected sum carefully defined, the notion of
prime knot can now be introduced, along with the prime
decomposition theorem for knots.

DEFINITION. A knot is called prime if for any decom-
position as a connected sum, one of the factors is unknot-
ted.

THEOREM 9. (Prime Decomposition Theorem) Every
knot can be decomposed as the connected sum of nontriv-
tal prime knots. If K = Ki#Ko# - #K,, and K =
J1# ot #JIm, with each K; and J; nontrivial prime
knots, then m = n, and, after reordering, each K; is equiv-
alent to J;.

The proof of the existence of a prime decomposition
follows immediately from the additivity of knot genus, to
be proved below, using induction on the genus of the knot:
if a knot decomposes as a nontrivial connected sum, then
each factor has lower genus than the original knot; genus
1 knots are prime because 1 is not the sum of positive
integers. The uniqueness of decompositions will not be
proved here. The complete proof is similar to the proof of
additivity of genus, as it involves the careful manipulation
of surfaces in 3-space, in particular the families of spheres
that split the knot into a connected sum. However, the
argument is quite long and detailed.
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0O THEOREM 10. (Additivity of knot genus) If K =
K1#K; then genus(K) = genus(K1) + genus(K2).

ProOOF

The proof that the genus of the connected sum is at most
the sum of the genera of the summands is easy. Minimal
genus Seifert surfaces for K; and K, can be pieced together
to form a Seifert surface for the connected sum. By Corol-
lary 3, the genus of that surface is the sum of the genus of
each piece. It remains to show that the surface is in fact a
minimal genus Seifert surface for the connected sum.

The argument that the genus of the connected sum is
at least the sum of the genera goes as follows. Figure 4.17
illustrates the connected sum of K; and K, along with a
separating sphere S. Let F' be a minimal genus Seifert sur-
face for the connected sum. The surface is not drawn as
there is initially no information as to how it sits in space
relative to K;,K5, and S. It will be shown that there is
a second surface, G, of the same genus as F', which can
be described as the union of Seifert surfaces for K; and
K5, meeting in a single interval of their boundaries. It
follows from Corollary 3 that the genus of G is the sum
of the genera of those two surfaces, and is hence at least
the sum of the minimal genera of Seifert surfaces of those
knots. The approach is to work with the intersection of F'
and S. F intersects S in a collection of arcs and circles on
S. (Initially, this might not be quite true. For instance,
the intersection could contain some isolated points. How-
ever, moving F slightly will eliminate any such unexpected
intersections.)

In addition, it should be clear that the only arc of
intersection on S runs from the two points on S that in-
tersect K. Now one works with the circles of intersection,
using surgery to eliminate them one by one.
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Consider an innermost circle of intersection. That is,
pick one of the circles on S that bounds a disk on S con-
taining no points of intersection of F' and S in its interior.
Surgery can be performed on F along this disk to con-
struct a new surface bounded by K. If the new surface
is connected, then it is a Seifert surface for K, which, by
Theorem 8, has lower genus than did F, contradicting the
minimality assumption on the genus of F. Hence, surgery
results in a disconnected surface. Remove the component
that does not contain K. The remaining surface has genus
less than or equal to that of F' (Theorem 8 again), and by
the minimality assumption it actually has the same genus
as F. In addition, this new surface will have fewer circles
of intersection with S; the circle along which the surgery
was done is no longer on the surface.

Repeating this construction, a surface G results that
meets S only in an arc. Hence G is formed as the union
of Seifert surfaces for K; and K, that intersect in a single
arc, as desired.

This argument is often referred to as a cut-and-paste
argument, because it consists of cutting out portions of the
surface and pasting in new pieces of the surface. Another
name for this type of geometric construction is an inner-
most circle argument. This type of argument is typical of
geometric proofs in knot theory, and in geometric topol-
ogy. O

As described earlier, the existence of prime decompo-
sitions follows from the additivity of knot genus; as a knot
is decomposed as a connected sum, the genus of the factors
decreases. The uniqueness follows from a much more care-
ful cut-and-paste, innermost circle proof. The additivity
of genus has the following immediate consequence.

COROLLARY 11. If K is nontrivial, there does not ez-
ist a knot J such that K#J is trivial.
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EXERCISES
5.1. Give a proof of the final corollary.

5.2. Use the connected sum of 3 distinct knots to find an
example of a knot which can be decomposed as a connected
sum in two different ways.

5.3. Prove that a genus n knot is the connected sum of at
most n nontrivial knots.

5.4. Fill in the details of the proof of the existence of prime
decompositions using the additivity of genus.

5.5. Use the genus to give a simple proof that there are
an infinite number of distinct knots. As a much harder
problem, can you find an infinite number of distinct prime
knots? (Later, once more efficient means are developed
to compute Alexander polynomials, this too will become a
simple exercise.)
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CHAPTER 5
ALGEBRAIC TECHNIQUES

The field of mathematics called algebraic topology is de-
voted to developing and exploring connections between
topology and algebra. In knot theory, the most impor-
tant connection results from a construction which assigns
to each knot a group, called the fundamental group of the
knot. Knot groups will be developed here using combina-
torial methods. An overview of the general definition of
the fundamental group is given in the final section of the
chapter.

The fundamental group of a nontrivial knot typically
is extremely complicated. Fortunately, its properties can
be revealed by mapping it onto simpler, finite, groups. The
symmetric groups are among the most useful finite groups
for this purpose. This chapter begins with a review of sym-
metric groups. Following that, it is shown how a symmet-
ric group can provide new means of studying knots. The
rest of the chapter is devoted to studying the connection
between groups and knots more closely.

1 Symmetric Groups The discussion of symmetric
groups that follows focuses

on a particular example, Ss. The reader will have no trou-
ble generalizing to S,,, and is asked to do so in the exercises.

83
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Several results that will be used later are described in the
exercises also.

Let T denote the set of positive integers, {1,2,3,4,5}.
Recall that a permutation of T is simply a one-to-one func-
tion from T to itself. There are 5! = 120 such permuta-
tions.

The set of all such permutations, denoted Ss, has an
operation defined on it via compositions of functions; the
composition of two permutations, thought of as functions,
defines a new permutation. The notation for g composed
with f is fg. (That is, fg(i) = g(f(¢)).) This order is
reversed from what is often used in algebra, but is fairly
standard in knot theory.

As a specific example, suppose that f is the function
that sends 1 to 2,2t03,3to4,4to5,and 5to 1. Let g
denote the function that sends 1 to 3, 2 to 4, 3 to 2, 4 to
1, and 5 to 5. Then fgsends1to4,2to2,3to1,4to05,
and 5 to 3.

The properties of composition are especially interest-
ing. For instance, note from the start that it is not com-
mutative. In the example above, fg is different from gf.
Check this. (As a quick exercise, why is the product asso-
ciative?)

CycLic NOTATION

There is a clever shorthand notation that greatly simplifies
working with permutations. It is called cyclic notation. A
cycle consists of an ordered sequence of distinct elements
from T, and represents the permutation that carries each
element to the next on the list, sending the last to the
first. All the elements that do not appear are fixed by the
permutation.

EXAMPLE 1
The symbol (1,3,4,2,5) denotes the permutation that takes



ALGEBRAIC TECHNIQUES 85

1t03,3t04,4t02,2t05, and 5 to 1. It is called a 5-cycle.
Note that it represents the same permutation as does the
cycle (3,4,2,5,1).

EXAMPLE 2
The symbol (2,4,5) denotes the permutation that takes
2to 4,4 to 5, and 5 to 2. It is called a 3-cycle. The
terms that do not appear are fixed by the corresponding
permutation. That is, 1 goes to 1 and 3 goes to 3.

The following is an especially useful theorem.

THEOREM 1. Every permutation can be written as the
product of cycles, no two of which have an element in com-
mon.

The proof of this is given in most introductory texts in
algebra. The exercises give some practice in writing per-
mutations as such products, and with a little work the
notation will become second nature.

EXAMPLE 3
The permutation that takes 1 to 3, 3 to 2, 2 to 1, 4 to 5,
and 5 to 4 can be written as (1,3,2)(4,5), the product of a
disjoint 3-cycle and a 2-cycle.

Using cyclic notation it is also easy to write down and
compute the product of permutations.

EXAMPLE 4

(1,3,2)(2,3)(1,5,4) = (1,2,5,4). (For instance, since the
first cycle sends 1 to 3 and the second sends 3 to 2, and
the last does not affect 2, the composition sends 1 to 2.
The first sends 3 to 2 and the second sends 2 to 3, and the
last does not affect 3, so the composition sends 3 to 3.)
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ExXAMPLE 5
This is really one more exercise.
(1,3,4)(1,4,5)(2,3)(1,3,2,5,4)(1,4)(2,5,3) = (1,3)(2,5).

GENERATING SUBSETS

A set of permutations, {g1,...,9x} is said to generate the
symmetric group if every element in the group can be writ-
ten as a product of elements from the set, with possible
repetitions, and their inverses. In Exercise 7 it is shown
that certain sets of transpositions (i.e., 2-cycles) generate
the symmetric group. Exercise 9 presents other generating
sets.

NOTATION

This cyclic notation varies from reference to reference.
First, consider the permutation that sends 1 to 3, 3 to
1,2 to 2, 4 to 4, and 5 to 5. It is written here as (1,3).
Some books write it as (1,3)(2)(4)(5). This added notation
is useful in indicating that the original set T' contained the
elements {1,2,3,4,5}.

Second, note again that in the notation used here,
permutations are multiplied from left to right. In many
references they are multiplied from right to left.

Finally, there is some ambiguity in the notation. Does
the symbol (1,2,3)(4,5) denote a single permutation, or the
product of two cycles? In either case, the actual permuta-
tion that is represented is the same. Hence, what appears
as an ambiguity in notation is actually clear in meaning.
Anytime two permutations are written side by side they
will be viewed as representing a product.

For the knot theory that follows, facility with the sym-
metric groups and cyclic notation is essential. The follow-
ing exercises provide practice in working with the symmet-
ric groups and also describe important results that will be
used in the next sections.
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EXERCISES

The definition of the symmetric group Sg, or for that mat-

ter Sy, should now be clear; it exactly corresponds to ev-

erything above, with 5 replaced by 6, or by n.

1.1. This first exercise concerns some explicit calcula-

tions in the group Sg, the set of permutations of the set

{1,2,3,4,5,6}.

(a) Let f be the permutation given by f(1) =4, f(2) =
3, /(3) =86, f(4) =5, f(5) =2, f(6) = 1. Write f in
cyclic notation.

(b) Same question for g, where g is given by g(1) =5,

(c) Simplify the following products. That is, write each
as a product of disjoint cycles.

i. (1,2,3)(4,5,6)(1,2)(3,4)(5,6),
i. (1,2)(3,5,6,4,)(1,3,5)(4,2),
iii. (1,2)(3,6,4,5)(1,3,6)(1,3,5)(2,4),
- (1,2)(2,3)(3,4)(4,5)(5,6).
1.2. Show that Sg is not commutative. That is, find per-

mutations f and g such that fg does not equal gf. (Write
f and g in cyclic notation.)

-

—

i

<

1.3. Again working in Sg,

(a) The inverse to (1,4,2,5)(3,6) is (1,5,2,4)(3,6). Show
this. (That is, verify that the product of these two
permutations is the identity permutation. The iden-
tity permutation is the permutation f that satisfies
f(z) = z for all z in the domain.)

(b) Find the inverses to (1,3,6,4,5,2), (1,6,4)(2,5,3), and
(1,2,3,4)(3,4,2)(3,5,6,1).

(c) In general, how does one write down the inverse of a
permutation given in cyclic notation?
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(d) Let g be the permutation (1,6,3)(2,4,5). Compute
g7 1(2,3,4)g, and g71(1,3)(4,5,2,6)g. What is a short
cut for computing g~ fg in general? (Hint: It might
help to recall that in cyclic notation different looking
permutations can be the same. For instance, (1,5,3,4)
= (5,3,4,1) = (3,4,1,5) = (4,1,5,3).) The operation
of going from f to g~!fg is called conjugation by g.

1.4. Is it possible in Sg for the product of two 4-cycles to

be an 8-cycle?

1.5. The order of a permutation f is the least positive

integer n such that f composed with itself n times is the

identity.

(a) What is the order of the cycle (1,3,4,6,2)7

(b) Verify that the order of (1,3,5)(2,4) is 6.

(c) What is the largest order of an element in S7? In Syo?
In Sgo?

1.6. Find all of the 4-cycles in S; that commute with

the cycle (1,2,3,4). Describe the cycle structure of the

permutations of Sy which commute with (1,2,3,4).

1.7. (a) Check that the 5-cycle (1,2,3,4,5) is equal to the

product of transpositions, (1,2)(1,3)(1,4)(1,5).

(b) Write (1,5,3,4) as a product of four transpositions.
Write (1,2,4)(3,5,6) as a product of transpositions.

(c¢) Argue that every permutation is the product of trans-
positions, and more specifically is a product of trans-
positions of the form (1,n).

(d) Show that every permutation can be written as the
product of transpositions taken from the set
{(1,2),(2,3),(3,4),(4,5),...,(n - 1,n)}.

1.8. What is the least number of transpositions that can

generate S,,?
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1.9. (a) Show that the set of 4-cycles generates Sy. (Find
a way to write a single transposition as a product of 4-
cycles.)

(b) Show that the 4 cycles (1,2,3,4) and (1,2,4,3) gener-

ate Sy.

1.10. A permutation can be written as the product of
transpositions in many ways. A basic result about the
symmetric groups states that the parity of the number
of transpositions used does not depend on the choice
of expansion. For instance, since (1,3,5)(2,4,6,7) =
(1,3)(1,5)(2,4)(2,6)(2,7), any expansion of (1,3,5)(2,4,6,7)
will use an odd number of transpositions. The sign of
a permutation is said to be even or odd depending on
whether or not an even or odd number of transpositions
appears in its expansion.

(a) Show that the sign of an n-cycle is even if and only if
n is odd.

(b) How does the sign of a product of permutations de-
pend on that of its factors?

2 Knots and Groups In Chapter 3 knot diagrams
were labeled in a variety of
ways. Now a procedure will be described for labeling knots
with elements of a group. The discussion could be simpli-
fied by using some specific group. For example, it may be
helpful to think of G as S5 or S,, on the first reading of this
section. The examples and exercises will mostly be taken
from S,,.
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It was seen in Chapter 3 that labelings mod p provide
a powerful means for studying knots. Each odd prime
number offered a potential tool for studying a knot. Now it
will be seen that each group offers another potential tool.
The subtle and intricate properties of a group can reflect
the details of complicated knotting.

The work in this section will be done with oriented
knots. As in the case of the Alexander polynomial the
results do not depend on the choice of orientation. How-
ever in this case the independence on orientation is easily
proved.

LABELING KNOT DIAGRAMS

A labeling of an oriented knot diagram with elements of a

group consists of assigning an element of the group to each

arc of the diagram, subject to the following two conditions.

(1) Consistency: At each crossing of the diagram three
arcs appear, each of which should be labeled with an
element from the group. Suppose the labels are the
group elements g, h, and k. In the case of a right-
handed crossing as illustrated in Figure 5.1a, the la-
bels must satisfy gkg~! = h.

\ /

Figure 5.1
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At a left-handed crossing, as illustrated in Figure 5.1b,
the condition is that ghg~! = k.

(2) Generation: The labels must generate the group. (As
described in the previous section, this means that ev-
ery element in the group can be written as a product
of the elements that appear as labels, along with their
inverses.)

Given a set of elements in a group, it is often difficult
to decide if they form a generating set. The exercises in
the previous section gave some examples of sets of permu-
tations that generate S,,. More examples will follow. If the
notion of generation is not yet clear, focus on the consis-
tency condition. With some practice the idea of generation
will become clear as well.

Figure 5.2 indicates labelings of the edges of the trefoil
knot with elements from the symmetric group S3 and from
S4. It is straightforward to check that at each crossing the
consistency condition is satisfied. All the transpositions of
S5 appear, so the set of labels does satisfy the generation
condition also. Exercise 9 of the previous section shows
that the second set of labels also generates.

(12) (1243)

(13)
(1324)
23) (1234)

Figure 5.2
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As a second example consider the knot in Figure 5.3.
In that diagram a labeling from Sj is indicated. Again the
two conditions can be verified.

(45)(123)

(35)(124)
Figure 5.3

The usefulness of these labelings comes from the fol-
lowing theorem. It states that if some diagram of a knot
can be labeled with elements of a group G, then every
diagram for that knot can be labeled with elements of G.
Hence, every example of a group provides a potentially new
means for distinguishing knots. For instance, the knot in
Figure 5.3 is nontrivial since it can be labeled with ele-
ments from Sy while the unknot cannot be. To state the
theorem formally:

0 THEOREM 1. If a diagram for a knot can be labeled
with elements from a group G, then any diagram of the
knot can be so labeled with elements from that group, re-
gardless of the choice of orientation.

PRrOOF
A combinatorial proof of this theorem is available. As in
the proofs of Chapter 2, one just checks what happens with
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each Reidemeister move. The proof has a large number of
cases, none of which are difficult.

Figure 5.4 indicates a portion of a knot diagram before
and after a Reidemeister move has been performed. La-
belings on each diagram indicate how the labeling on the
first diagram can be changed into labelings on the second.
You are invited to check a few more cases of this combi-
natorial proof. Recall that there are cases corresponding
to other Reidemeister moves and also cases corresponding
to the same moves but with different orientations on the
edges.

g kg g~lkhk™lg g~ lkg g lkhk~lg

7 .\ [/

g-lhg/ — /th-l

4\ /\.

Figure 5.4

Checking that the choice of orientation does not mat-
ter is fairly easy. If an oriented diagram of a knot can be
labeled with elements from a group G, the same diagram of
the knot, with its orientation reversed, can be labeled with
elements of G by just labeling each edge with the inverse of
the element that was used in the first diagram. The result
follows from observations of the type that if gkg~! = h
then g7'h~lg = k1. O
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The use of labelings is one of the most powerful means
of distinguishing knots. For instance, in Thistlethwaite’s
compilation of prime knots with 13 crossings, he found
12,965 knots. However, only 5,639 different Alexander
polynomials appear and 14 have polynomial 1. By us-
ing labelings (taken from thirteen different groups) he was
able to reduce the number of unidentified knots down to
about 1,000. A more refined approach, based on results
to be described in the next section, gave Thistlethwaite’s
complete classification.

Although the definition of a labeling with group ele-
ments is relatively simple, actually finding such labelings
can be extremely difficult. There is one important observa-
tion that simplifies the process. At a crossing in a diagram,
once the overcrossing and one of the two other arcs are la-
beled, the label on the last arc is forced by the consistency
condition.

Many fascinating results and problems in knot theory
concern labelings with group elements. For instance, Perko
proved a remarkable theorem stating that, if a knot can be
labeled with elements from Ss, it also has an Sy labeling.
Similar results concerning other groups have since been
discovered.

EXERCISES

2.1. Check that the consistency condition is satisfied at all
the crossings in the labeled knot diagrams illustrated by
Figures 5.2 and 5.3.

2.2. In Figure 5.5 two of the labelings satisfy the consis-
tency condition, while one of the three does not. Find the
inconsistent labeling.
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12) 13) (23)

(68

23) (13 (12)  (12)(345) (13)(245)

()

Figure 5.5

2.3. Figure 5.6 illustrates a knot with some of its edges
labeled. Use the consistency condition to determine a la-

beling for the entire diagram.

2.4. Find a labeling of the (3,3,3)-pretzel knot illustrated
in Figure 5.7 using transpositions from Ss. Your labeling
should have every transposition appear, so it is clear that
the labels generate the group. (Hint: Pick your labels for
the three strands indicated. This will force a choice of the

rest of the labels via the consistency condition.)
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(12)

3y Y
Q_
&

Figure 5.6 Figure 5.7

2.5. For what values of p, ¢, and r, can the (p,q,r)-pretzel
knot be labeled with transpositions from S4?

2.6. In order to make sure that the independence of ori-
entation is clear, do the following exercise. Check that in
some of the previous examples the labeling becomes in-
consistent if the orientation of the knot is reversed. Show,
however, that if the orientation of the knot is reversed and
if each label is replaced with its inverse, then the labeling
will again become consistent.

2.7. Suppose that a knot diagram is labeled with elements
in a group, and g is some arbitrary element in the group.
Show that if each label, ¢, is replaced with its conjugate
by g, (¢~ 1£g), then the resulting labeling satisfies the con-
sistency condition.

3 Conjugation and If a knot is labeled with ele-
the Labeling Theorem ments from a group, all the
labels that appear represent

conjugate elements of the group. This simple observation
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can be used to add great power to the method of label-
ing. Thistlethwaite’s classification of 13 crossing knots de-
pended heavily on the inclusion of conjugacy considera-
tions. More important, this added detail provided the first
means of showing that a particular oriented knot is not
equivalent to its reverse.

CONJUGACY RELATIONS IN A GROUP

Elements g and & in a group G are called conjugate if there
is an element k in G such that k=1 . g-k = h. For example,
in S5 the element (1,2)(3,4,5) is conjugate to (2,4)(1,5,3).
Just let k = (1,2,4,5,3).

In the symmetric group, two elements are conjugate if
and only if they have the same cyclic structure. That is, a
product of a 2-cycle and a disjoint 3-cycle is conjugate to
any other such product, but is never conjugate to a 5-cycle
or the product of two disjoint 2-cycles. This follows from
the reasoning used in Exercise 1.3 of this chapter.

Using the notion of conjugacy, a group can be broken
down into conjugacy classes consisting of all conjugate el-
ements in the group. In S5 there are 7 conjugacy classes:
elements conjugate to (1,2); (1,2,3); (1,2,3,4); (1,2,3,4,5);
(1,2)(3,4); (1,2)(3,4,5); and elements conjugate to the
identity element.

CONJUGACY AND LABELINGS

Suppose a knot diagram is labeled with the elements of a
group. At each crossing the consistency conditions imply
that the label of the arc that passes under the crossing is
conjugate to the one that emerges from the crossing. It
follows that all the labels of the labeling are conjugate el-
ements of the group. As an example, the knot diagram
for 946 in the appendix can be labeled with transpositions
from S, while such a labeling is not possible for the dia-
gram of 6;. On the other hand, the diagram for 6; can
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be labeled with 4-cycles from S; while no such labeling is
possible for the diagram of 94¢. (See Exercise 3.4.)

The main result of the previous section can now be
strengthened. The proof of the following theorem is similar
to that of the proof of Theorem 1. Note however that ori-
entation is now an issue. There are examples of groups for
which not every element is conjugate to its inverse. These
groups provide one of the few means of distinguishing a
knot from its reverse.

THEOREM 2. If a diagram of an oriented knot can
be labeled with elements of a group, with the labels coming
from some conjugacy class of the group, then every dia-
gram of that knot can be labeled with elements from that
conjugacy class.

To see the usefulness of this theorem to the problem
of classifying knots consider the previous example of the
knots 6; and 946. The fact that one can be labeled using
transpositions from Sy and the other cannot proves that
the knots are distinct. This is an especially interesting
example since these knots cannot be distinguished using
colorings, and both have the same Alexander polynomial,
—2t2 4+ 5t — 2.

It is often the case that if such tools as the poly-
nomial and geometric techniques cannot distinguish two
knots, then some clever choice of groups and labelings will
do the trick.

EXERCISES
3.1. How many conjugacy classes are there in Sg?

3.2. Prove that it is impossible to find a labeling of the
trefoil using transpositions from S4. (Check that once the
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labels on two edges are determined, all the labels are de-
termined, and then apply the result of Exercise 1.8.)

3.3. (a) Show that if an oriented knot is equivalent to its
reverse and can be labeled so that some edge is labeled
with a group element g, then it also has a labeling with

some label g~ 1.

(b) Show that in the symmetric group every element is
conjugate to its inverse. Hence, the labeling theorem
applied using the symmetric group alone is not suffi-
cient to distinguish a knot from its reverse.

(c) The set of even permutations forms a subgroup of Sy,
called the alternating group, and denoted A,. Show
that a 7-cycle is not conjugate to its inverse in Ay.
(To conjugate a 7-cycle to its inverse in S7 requires an
odd permutation to do the conjugating.)

3.4. Check the claims about labelings of the diagrams for
61 and 946-

3.5. The theory of labelings with group elements applies to
links as well as to knots. (Why?) It is not true, however,
that all the labels now come from the same conjugacy class.
This is easily demonstrated with the unlink. Prove that the
labels on each component of a labeled link are conjugate.

4 Equations in Groups Finding labelings of a knot
and the Group of using elements of a group is

a Knot apparently quite difficult, es-

pecially if you proceed by

guesswork. In the exercises it was seen that by taking ad-
vantage of the consistency relationships, once a few labels
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are chosen, the rest are determined. This approach can be
formalized to reduce the problem of finding labelings into
one of solving equations in a group. In addition to provid-
ing a practical tool for studying knots, the equations can
be used to actually define the fundamental group of the
knot.

Consider the knot in Figure 5.8. Fix a group G to be
used in the labeling. (For now you might want to think
of some particular symmetric group.) Suppose that labels
z, y, and z are picked for the top three arcs. Using the
consistency condition, it follows that the next arcs must
be labeled as indicated in the figure. From there you can
proceed down the knot. Moving down, each crossing de-
termines a label on another arc. The labeling of each arc
is forced by the labels that preceded it. Finally, using the
marked crossings you end up with the labeling indicated
in Figure 5.8.

TYT

q&

:cy“lz‘ly:c_lzwy_lwym‘l

Figure 5.8
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Clearly, the procedure has produced a consistent la-
beling if the consistency condition holds at the remaining
three crossings. That is, the knot has been consistently
labeled if the equations;

1

Ty " = y:z:"lz:z:y‘l

1 1

YT~ z_lxy_

1 1 1

Ty~ x_ly:v_lza:y_ YT
= yely tayzy T 2 yzye Ty e ey

1

1

ym‘ly"lzy:vy_l = z_ly_lzya:y‘ z‘lyz
hold in G.

The labels of the diagram will generate the group if
and only if z, y, and 2 generate the group. (Why?) In
summary, the knot pictured can be labeled with elements
from G if and only if there are generators for G, z, y, and
z, satisfying the equations

1_-1

yx_lzwy_lxya:' - :vy_lxy’la:_l =1
yely T zyzy 2 yaye Ty e ey

1 1 1

zy lrlyr ez oy T leyr Tl =1

1 1

z_ly_lzyzz:y_ z_lyzy:c_ly_ z_lyxy_l =1
(See Exercise 4.1 concerning the equivalence of the two sets
of equations.)

In general, finding a labeling for a knot can always
be reduced to solving equations in the group. This could
have been pointed out as soon as labeling was defined since
finding a labeling for a knot with an n crossing diagram is
equivalent to solving n equations (arising from the consis-
tency condition at each crossing) in n variables (the labels
on the arcs of the diagram.) However, the procedure just
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given usually results in many fewer, though more compli-
cated, equations.

(The reduction in the number of equations could be
carried out algebraically. Some of the original n equations
express individual variables in terms of others. Those vari-
ables could then be removed from the system of equations
using substitutions. The approach just given is usually
simpler.)

It is worth noting that the three equations that arose
in the preceding example are redundant. That is, if two
hold the other one is automatically true. (Can you see
why?) This is generally the case. Initially the number of
variables and equations will be equal, but it turns out that
any one of the equations is a consequence of the others.

PRESENTATIONS OF GROUPS, THE GROUP OF A KNOT
A detailed description of presentations of groups lies in the
realm of combinatorial group theory. The basic construc-
tion is easily summarized. Any collection of variables along
with a set of words in those variables defines a group. A
word is just an expression formed from the variables and
their inverses. The set of variables and words is said to
give a presentation of the group; the variables are called
the generators of the group, and the equations formed by
setting the words equal to 1 are called the defining rela-
tions of the group. Informally, the group is defined as
follows. An element consists of a word in the variables
and their inverses. Multiplication of such words is carried
out by concatenation, that is putting one word after the
other. The identity element is given by the “empty” word,
and is usually denoted “1”. Finally, two words are con-
sidered equivalent if one can be obtained from the other
by repeatedly (1) either adding or removing variables fol-
lowed by their inverses, and (2) either adding or deleting
appearances of the defining words.
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EXAMPLE
The two variables r and y, along with the word
zyzy~lz~ 1y~ ! give the presentation of a group. It is writ-
ten as G = (z,y | zyzy~ 'z~ 'y~ = 1). Let g = zy, and
h = yzy. Then in G the relation g® = h? holds. To see
this, write

¢® = (zy)(zy)(zy) = zyzyzy = zyz(y~ 'y)yzy

= zyry~'yyzy = zyzy~(z z)yyzy

1

= YTy w‘lwyyzy

= zyzy 'z~ (y " y)zyyzy

= (zyzy~ 'z~ 'y Nyzyyzy = yoyyry = K2

One remark about this example. A second group
could be defined by the presentation (g, h | g3h~=2 = 1).
The calculation just given essentially proves that the two
groups are isomorphic.

There are many shortcuts available for working with
groups and their presentations, and the calculations above
could be simplified. The exercises on this material are not
essential for continuing. In doing the exercises the reader
will discover some of the shortcuts and will also develop
intuition about group presentations.

THE GROUP OF KNOT

Given a knot diagram we have seen that it is possible to
come up with a collection of variables and equations of the
form w; = 1. Furthermore, given such a set of variables
and equations a group naturally arises. This group is called
the group of the knot. Although the group itself depends
on the choices made, such as the choice of the diagram, it
can be proved that any two groups that arise in this way
for a given knot will be isomorphic.
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The study of knot groups is a central topic in knot
theory. One of the most significant results in the sub-
ject, Dehn’s Lemma, was proved by Papakyriakopoulos.
It states that if a knot group is isomorphic to Z, the group
of integers, then the knot is trivial. Examples of distinct
knots with the same group do occur, but it is now known
that this is impossible for prime knots. That is, the only
knots which are not determined by their knot groups are
connected sums of nontrivial knots.

EXERCISES
4.1. Explain why the relation

1 1,.,.—1

ryr~! =y~ za:y_lxym_lz‘ Ty

is equivalent to the relation

1 -1, ~1

z_ly“lzy:z:y' z_lyzyw Y z'lymy_l =1

(In general, the relation g = h is equivalent to gh~! = 1.)

4.2. In Figure 5.9 two knot diagrams are shown, along with
a labeling of some of the edges. Compute the remaining

&) &5

Figure 5.9
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labels. In each case the knot group has two generators,
or variables, and is determined by a single relation, given
along with each diagram. Check these.

5 The Fundamental For any space X, the “funda-
Group mental group” is a group that
is naturally associated to the
space. In studying knots, the space of interest is the com-
plement of the knot in three space, R — K. It is not possi-
ble to develop the theory in detail here, but the definitions
can be summarized. Up until now, the association of alge-
braic invariants to a knot has depended on the use of the
knot diagram, although in each case using the Reidemeis-
ter moves it is possible to prove that the final result does
not depend on the choice of diagram. With the use of the
fundamental group it is possible to define these algebraic
quantities, and in particular the group of the knot, without
reference to diagrams. There are practical advantages to
this approach. For one, it permits the algebraic methods
to be applied in settings other than knots in three space.
Chapter 9 discusses knots in higher dimensions. Second,
it brings to bear many of powerful techniques of algebraic
topology, for instance, covering spaces and homology the-
ory. The material presented in this section is not used in
the rest of the text.

Denote the complement of a knot K by X, and fix a
point p in X. The elements of the fundamental group of X
are equivalence classes of closed oriented paths in X which
begin and end at p. These paths need not be simple; they
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may have self-intersections. Two such paths are viewed as
equivalent if one can be continuously moved into the other,
at all times keeping the endpoints at p. This transforma-
tion is called a homotopy. Unlike deformations of knots,
in a homotopy the path may have self-intersections. How-
ever, at no time may the path leave X; that is, it may not
cross K. In Figure 5.10 three paths in the complement of
the trefoil path are shown. The paths v; and -2 are ho-
motopic, but v3 is not homotopic to either one; this may
look clear, but is not easy to prove.

(55

Figure 5.10

These equivalence classes of paths form the elements
of the fundamental group; the product of two such ele-
ments must now be defined. Given paths +; and 73, one
can form a new path which travels around 7y; and then
around 72. In defining this formally, parametrizations
must be discussed. As one example of a product consider
the curves v, and -3 in Figure 5.10. Their product is ho-
motopic to the path shown in Figure 5.11.

There is a good deal of work involved in proving that
the group just described is well defined. Many of the de-
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——

=

7173

D

Figure 5.11

tails are concerned with the issue of parametrization. One
example of something that must be proved is that if paths
~1 and 2 are homotopic to w; and wy, respectively, then
the products are homotopic also. Another important part
of the proof is the construction of inverses. (The identity
element is represented by the constant path at p.)

The definition of the fundamental group is quite ab-
stract, and not very useful for doing calculations. A variety
of theorems permit simplifications in its calculation. The
most important of these is called the Van Kampen Theo-
rem; it describes how a decomposition of a space leads to
a decomposition of the fundamental group.

THE KNOT GROUP, THE FUNDAMENTAL GROUP, AND
LABELINGS

Here is a quick summary of the connections between the
fundamental group and the algebra presented earlier in the
chapter. A diagram of a knot yields a decomposition of the
knot complement which, using the Van Kampen Theorem,
in turn produces a simple presentation of the fundamental
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group. That presentation is the same as the presentation
of the knot group described in the previous section.

The connection with labeling can also be summarized.
For each arc in the diagram of the knot there is an element
in the fundamental group which is represented by a path
that runs from the base point, p, directly to the arc, once
around the arc, and then back to the basepoint. That
element corresponds to the element in the knot group given
by the variable label on the arc. It can be proved that
relations between the elements in the fundamental group
correspond to the relations in the knot group arising at the
crossings.

A group is often studied by mapping it homomorphi-
cally onto a simpler group, say G, which is better under-
stood. Given such a homomorphism of the fundamental
group of a knot complement, composing it with the cor-
respondence between the knot group and the fundamental
group gives an assignment of an element in G to each arc
in the diagram. That is, labelings of the diagram turn
out to correspond to homomorphisms of the fundamental
group of the knot complement. The consistency condition
on the labeling corresponds to the map being a homomor-
phism. The generation condition corresponds to the map
being surjective.




CHAPTER 6:
GEOMETRY, ALGEBRA, AND
THE ALEXANDER POLYNOMIAL

The discovery of connections between the various tech-
niques of knot theory is one of the recurring themes in this
subject. These relationships can be surprising, and have
led to many new insights and developments. A recent ex-
ample of this occurred with the discovery by V. Jones of a
new polynomial invariant of knots . Although his approach
was algebraic, the Jones polynomial was soon reinterpreted
combinatorially. Almost immediately there blossomed an
array of new combinatorial knot invariants which appear
to be among the most useful tools available for problems
relating to the classification of knots. An understanding
of these new invariants from a noncombinatorial perspec-
tive is now a major problem in the subject, and one that
will certainly lead to significant progress. Chapter 10 is
devoted to 'a discussion of the Jones polynomial and its
generalizations.

To demonstrate how various techniques can be re-
lated, this chapter presents geometric and algebraic ap-
proaches to the Alexander polynomial. The geometric ap-
proach introduces a new and powerful object, the Seifert
matriz, and for this reason geometry will be the main fo-
cus here. The algebraic approach links the combinatorics
to the geometry, and also demonstrates that the Alexander
polynomial of a knot is determined by the knot group.

109
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It is not surprising that bringing together the diverse
methods developed so far involves difficult technical argu-
ments. Even the definition of the Seifert matrix, given in
Section 1, is fairly complicated. The benefit of this tech-
nical argument is seen in Section 2, where a simple algo-
rithm for computing the Alexander matrix is given, and in
Section 3, where new knot invariants are developed. Fox
derivatives and their use in computing the Alexander poly-
nomial from a presentation of the knot group are described
in Section 4. This material may also appear quite techni-
cal; but again there are valuable insights gained from the
approach.

1 The Seifert Matrix If a surface is formed by
adding bands to a disk, the
cores of the bands along with arcs on the disk can be used
to construct a family of oriented curves on the surface.
This is illustrated in Figure 6.1. The choice of orientation
of the curves is arbitrary. In the case where the surface is a
Seifert surface for a knot, how these curves twist and link
carries information about the knot. This linking and twist-
ing information is captured by a matrix called the Seifert
matriz of the knot.

In Exercise 2.4 of Chapter 3, linking numbers were
defined. Exercise 2.5 of that chapter provided an alterna-
tive definition that is now summarized. Suppose that an
oriented link of two components, K and J, has a regular
projection. The linking number of K and J is defined to be
the sum of the signs of the crossing points in the diagram
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at which K crosses over J. The sign of a crossing is 1 if
the crossing is right-handed, that is, if J crosses under K
from the right to the left. The sign is —1 if the crossing is
left-handed. The linking number is denoted £k(K,J) and
is symmetric: £k(K,J) = ¢k(J,K).

Figure 6.1

Given a knot K, fix a Seifert surface F for K. Since
a Seifert surface is orientable, it is possible to distinguish
one side of the surface as the “top” side. Formally this
consists of picking a nonvanishing normal vector to the
surface. Which direction is picked will not matter. With
this done, given any simple oriented curve, z, on the Seifert
surface, one can form the positive push off of x, denoted
z*, which runs parallel to = and lies just above the Seifert
surface.

If the Seifert surface F is formed from a single disk
by adding bands, it was shown in Figure 6.1 that there
naturally arises a family of curves on F. If F is genus
g there will be 2g curves, ,,z2,...,224. The associated
Seifert matriz is the 2g x 2g matrix V with (i,j)-entry v; ;
given by v;; = lk(z;,z}). The Seifert matrix clearly de-
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pends on the choices made in its definition, and by itself is
not an invariant of the knot. However, in the next two sec-
tions it will be shown that the Seifert matrix can be used
to define knot invariants, including the Alexander polyno-
mial. The rest of this section is devoted to illustrating the
computation of entries in a Seifert matrix.

&

Figure 6.2

EXAMPLE

Computing the entries of a
Seifert matrix can be diffi-
cult, especially if the surface
is very complicated. Let’s
consider the Seifert matrix
for the Seifert surface and
knot illustrated in Figure 6.1.
The way the surface is ori-
ented, the normal vector to
the surface points toward the
reader on the disk portion of
the surface. Figure 6.2 illus-

trates the curves o and 3. Their linking number is 1, so

that v 3 = 1.

In Figure 6.3 the curves —
z2 and z3 are drawn. The (/‘ A
reader should redraw Fig- /j

ure 6.1 and check that the
curve drawn as x5 actually
lies above the Seifert surface.
It is a delicate construction.
Using Figure 6.3, one
computes vq 2 = Lk(z2,23) =
—5. Continuing in this way
(see Exercise 1.2) the final re-
sult is that the Seifert matrix

Figure 6.3
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is given by
2 1 0 0
-5 -5 1 0
0 1 2 -1
0 0 -2 -2
EXERCISES

1.1. In Figure 6.4 Seifert surfaces for the trefoil knot and
its mirror image, the left-handed trefoil, are illustrated.
Compute the Seifert matrix associated to each of these
surfaces.

Figure 6.4

1.2. Complete the calculation of the Seifert matrix for the
knot in Figure 6.1.

1.3. Figure 6.5 illustrates the Seifert surface of a knot,
previously discussed in Exercise 2.2 of Chapter 3. (This
particular example is the 3-twisted double of the unknot.)
Compute its Seifert matrix.

1.4. In Exercise 2.5 of Chapter 4 Seifert surfaces for the
(p,q,7)-pretzel knot were constructed, for p, ¢, and r odd.
Find the corresponding Seifert matrix.
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/,\\x\x\

7\ CRRA

Figure 6.5 Figure 6.6

1.5. Figure 6.6 above shows a Seifert surface for the (2,n)-
torus knot. (Only the (2,5)-torus knot is shown, but the
pattern is clear.) Find the corresponding Seifert matrix.

1.6. What would be the effect of changing the orientation
of the Seifert surface on the Seifert matrix?

1.7. Seifert surfaces for two knots can be used in order to
form a Seifert surface for the connected sum of the knots.
How are the corresponding Seifert matrices related?

1.8. In Exercise 1, the example of the trefoil and its mirror
image can be generalized. What is the relation between
the Seifert matrix of a knot, found using some given Seifert
surface, and the Seifert matrix for its mirror image, found
using the mirror image of the given Seifert surface?

2 Seifert Matrices The Alexander polynomial is

and the Alexander easily computed using the
Polynomial Seifert matrix; recall, once

again, that the polynomial is

only defined up to multiples of £¢!. An immediate con-
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sequence will be a proof that the Alexander polynomial
is symmetric. A proof of this based on the combinatorial
definition of the Alexander polynomial is not at all evident.

THEOREM 1. Let V be a Seifert matriz for a knot
K, and V* be its transpose. The Alezander polynomial is
given by the determinant, det(V —tV?).

Later in this section it will be indicated why this de-
terminant gives a well-defined knot invariant. The proof
that it is the same as the combinatorially defined Alexan-
der polynomial is a deeper result. The connection is via
algebra: the complement of the knot can be decomposed
using a Seifert surface and that decomposition leads to
information about the structure of the knot group. In Sec-
tion 4 a connection between the group of the knot and the
Alexander polynomial will be presented. Carefully putting
all these connections together yields the desired result.

One important corollary of Theorem 1 is the following.

COROLLARY 2. The Alexander polynomial of a knot
K satisfies Ak (t) = t¥iAg(t™) for some integer i.

PRrROOF

This is an immediate consequence of the fact that a ma-
trix and its transpose have the same determinant: if
a Seifert matrix V is used to compute the Alexander
polynomial Ak (t) = det(V —tV?) = det((V —tV?i)t) =
det(VE—tV) = det(tV -V?) = det(t(V-¢t"1V%)) =
t29 A (t71). ]

S-EQUIVALENCE OF SEIFERT MATRICES
The construction of the Seifert matrix of a knot depended
on many choices. Two of these are especially critical.
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Band moves: If a Seifert surface is presented as a disk
with bands added, that surface can be deformed by sliding
one of the points at which a band is attached over another
band. The resulting surface is again a disk with bands
added. However, the 2g curves formed from the cores of
the new bands will not be the same as those formed from
the cores of the original bands. The effect of this operation
is to do a simultaneous row and column operation on the
Seifert matrix; that is, for some ¢ and 7, a multiple of the i-
th row is added to the j-th row, and then the same multiple
of the i-th column is added to the j-th column. A sequence
of these band slides changes the Seifert matrix from V' to
MV M? where M is some invertible integer matrix.

Stabilization: Given a Seifert surface for a knot, it
can be modified by adding two new bands, as illustrated
in Figure 6.7 for the Seifert surface of the trefoil. One of
the bands is untwisted and unknotted. The other can be
twisted, or knotted, and can link the other bands.

NN

Figure 6.7

It is clear that the boundary of the new surface is the
same knot as for the original Seifert surface. The effect
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of this operation on the Seifert matrix is to add two new
columns and rows, with entries as indicated.

o= OO0 0OO

O ¥ ¥ X ¥ ¥

B
000
Two integer matrices are called S-equivalent if they
differ by a sequence of operations of the two types de-
scribed: right and left multiplication by an invertible in-
teger matrix and its transpose, and addition or removal of
a pair of rows or columns of the type shown above. These
two matrix operations also include the changes that occur
in a Seifert matrix if the bands are reordered, or reoriented.
A difficult geometric argument shows that for any two
Seifert surfaces for a knot, there is a sequence of stabiliza-
tions that can be applied to each so that the resulting
surfaces can be deformed into each other. A consequence
is the following:

THEOREM 3. Any two Seifert matrices for a knot are
S-equivalent.

COROLLARY 4. IfVy and V3 are Seifert matrices asso-
ciated to the same knot, then the polynomials det(V; — tVY)
and det(V — tV3}) differ by a multiple of £t*.

ProoF
This is proved by checking the effect of the two basic op-
erations of S-equivalence on the determinant. The first,
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multiplying by M and M® has no effect on the determi-
nant, since det(M) = 1. The second has the effect of
multiplying the determinant by t. ]

EXAMPLE

In Section 1 the Seifert matrix of the knot illustrated in
Figure 6.1 was presented. The Alexander Polynomial of
that knot is given by the determinant of the matrix

2-2¢t 1 0 0
-t =5+5t 1-t 0
0 1-t 2-2t —-1+2¢
0 0 -2+t 242t

The determinant of this matrix is 64¢4 — 272t3 + 417¢2 —
272t + 64.

EXERCISES

2.1. Compute the Alexander polynomial of the trefoil knot
using the Seifert matrices found in Exercise 1 of the pre-
vious section.

2.2. Find the Alexander polynomial of the knot discussed
in Exercise 1.3, using the Seifert matrix found there.

2.3. Check the calculation of the determinant that gives
the Alexander polynomial of the knot in Figure 6.1.

2.4. Compute the Alexander polynomial of the (p,q,r)-
pretzel knot, (p, ¢, and r odd) by using the Seifert matrix
found in Exercise 1.4.

2.5. Use the result of Exercise 1.7 to show that the Alexan-
der polynomial of the connected sum of knots is the prod-
uct of their individual Alexander polynomials.

2.6. The Alexander polynomial of a knot can be normal-
ized so that only positive powers of ¢ appear and the con-
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stant term is nonzero. Show that the degree of the result-
ing polynomial is even. Hint: use the symmetry condition,
along with the fact that Ag(1) is odd. (If Ax(1) is even,
so is Ax(—1) and the knot would have a mod 2 labeling.
Now see Exercise 3.5, Chapter 3.)

2.7. Show that if the determinant of a 2g x 2g Seifert ma-
trix is nonzero, then the Alexander polynomial is degree
2g and has nonzero constant term.

3 The Signature of In the last section it was seen

a Knot, and Other that any two Seifert matrices

S-equivalence for a knot are S-equivalent;

Invariants that is, a pair of fairly simple

operations will transform one

to the other. Because of this many knot invariants can be

defined using the Seifert matrix. This section discusses a
few of them.

DETERMINANT

The determinant of the Seifert matrix can change under
stabilization, and is not an invariant of the knot. However,
if V' is the Seifert matrix of a knot, then the determinant of
V 4+ V! is only changed by a sign if the matrix is stabilized.
This is an easy exercise in determinants, and is given in the
problems below. Multiplying by a matrix of determinant
+1 can at most change the sign of the determinant as well.
Hence, the absolute value of the determinant of V +V* is
a well-defined knot invariant.

This is in fact the same as the determinant invariant
defined in Chapter 3. The determinant of V + V' is the
value of the Alexander polynomial evaluated at t = —1 up
to a sign. The Seifert matrix approach leads to a simple
calculation of the determinant.
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THE SIGNATURE OF A KNOT

Given a symmetric (A = A!) real matrix, there is a
signature defined. One definition is constructive. By per-
forming a sequence of simultaneous row and column oper-
ations the matrix can be diagonalized. The signature of
the matrix is defined to be the number of positive entries
minus the number of negative entries on the diagonal.

EXAMPLE

Consider the symmetric matrix A; below. Multiply the
first row by —1/4 and add it to the second row. Now
perform the same operation using the first column. The
resulting matrix is listed as As.

4 1 0 0
1 10 2 0
A= 0 2 4 -3
0 0 -3 -4
4 0 0 0
0 39/4 2 o _
1o 2 4 3| =4
0 0 -3 -4

Using the second row and column the nondiagonal
entries of the second row and column can be changed to
0. Finally, working with the third column and row reduces
the matrix to diagonal form. The exercises ask you to
check that the final result is

0 0 0
39/4 0 0

0 140/39 0

0 0  —911/140

O OO
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As there are 3 positive entries and 1 negative entry the
signature is 3— 1= 2.

A theorem of algebra, named for James J. Sylvester,
states that if the symmetric matrix B is given by B =
MAM?, where M is invertible, then the signatures of A
and B are equal.

For a Seifert matrix V of a knot K, the matrix V + V*
is symmetric and its signature is called the signature of K,
denoted o(K).

THEOREM 5. For a knot K, the value of o(K) does
not depend on the choice of Seifert matriz, and is hence a
well-defined knot invariant.

ProOF

First, note that if Seifert matrices V and W are related
by W = MVM?, then (W + W?) = M(V + V*)M?. Hence
Sylvester’s theorem implies that the signature of (W + W?)
is the same as that of (V +V*). All that is left to check
is that stabilization of V' does not change the signature of
(V +V*). Proving this is left to the exercises. O

EXAMPLE
A Seifert matrix V for the knot in Figure 6.1 was given
in Section 1. For that V, V +V? is the matrix discussed
in the previous example, and hence the signature of that
knot is 2.

Using the Seifert matrix for the trefoil computed in
Exercise 1.1 V + V' is given by

(G =)

It has signature —2.
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The same calculation for the left-handed trefoil gives
a signature of 2. Hence, the right and left trefoils are
inequivalent knots.

THE SIGNATURE FUNCTION

The signature of a knot can be generalized by using com-
plex numbers. First recall that a complex matrix is called
Hermitian if it equals its conjugate transpose. Any Hermi-
tian matrix can be diagonalized performing a sequence of
row and column operations. The only change from the di-
agonalization of real matrices is that if a row is multiplied
by a complex number, then, when the corresponding col-
umn operation is performed, the column is multiplied by
the conjugate of that number. Once diagonalized, the ma-
trix has real entries, (as it equals its conjugate transpose)
and the signature of the matrix is given by the number
of positive entries minus the number of negative entries.
Again, a theorem of linear algebra states that if a Hermi-
tian matrix A is replaced by MAM™ where M is an invert-
ible complex matrix and M™* is its conjugate transpose, the
signature is unchanged.

Let V be the Seifert matrix for a knot K and let w
be a complex number of modulus 1. Consider the Her-
mitian matrix (1 —w)V + (1 —w™1)V*. The signature of
this matrix is called the w-signature of K. Checking that
S-equivalent Seifert matrices have the same w-signature is
straightforward; only stabilization remains to be checked.
If one thinks of modulus 1 complex numbers as lying on
the unit circle in the complex plane, this signature defines
a function on the unit circle called the signature function
of the knot.

Even for 2 x 2 Seifert matrices, the signature function
can be difficult to compute. (See Exercise 3.8.) However,
it can sometimes be used to distinguish knots where other
methods fail. It also has many theoretical applications.
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EXERCISES

3.1. Complete the diagonalization and signature calcula-
tions presented in the section.

3.2. Compute the signature of the (3,5,—7)-pretzel knot .
3.3. Compute the determinant of the (p,q,r)-pretzel knot.

3.4. For a Seifert matrix V, det(V +V?*) # 0. (Why?)
Conclude that the signature of a knot is always even.

3.5. Prove that stabilization does not change the signature
of a matrix.

3.6. Use Exercise 1.7 to show that the signature of a con-
nected sum of knots is the sum of their signatures.

3.7. Prove that the matrix (1—w)V +(1—w™1)V* has
nonzero determinant for w of modulus 1 unless w is a root
of the Alexander polynomial. Conclude that the signature
function is constant on the circle, except for a finite number
of jump discontinuities.

3.8. Compute the signature function for the trefoil and the
figure-8 knot.

3.9. Compute the signature of the (2,n)-torus knot using
Exercise 2.5.

4 Knot Groups In Chapter 5 it was shown

and the Alexander how to construct a presenta-
Polynomial tion of a group, starting with

a knot diagram. The presen-

tation consists of a set of n variables, and n — 1 words in
the variables (and their inverses.) In this section an al-
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gorithm will be presented that computes the Alexander
polynomial of the knot starting with a group presentation
of the form arising from the construction given in Chapter
4. The algorithm was discovered by Fox. It is, in fact,
possible to compute the polynomial using any presenta-
tion of the group, but to do this the algorithm has to be
generalized.

That the knot polynomial is determined by the group
of the knot has certain theoretical implications. For in-
stance, as mentioned in Section 2, the link between the
combinatorial and geometric definition of the Alexander
polynomial is provided by this algebra. On the practical
side, Fox’s algorithm provides one more means of comput-
ing the Alexander polynomial.

Fox DERIVATIVES

There is a procedure for defining the formal partial deriva-
tives of monomials in noncommuting variables. In the
present case these monomials will be the defining words
of the group of a knot. The definition of the derivative
begins with two basic rules, which in turn determine the
derivative in general. Fox proved that these rules yield a
well-defined operation on the set of words. Note that the
derivative of a word will no longer be a single word, but
rather the formal sum of words.

1. (0/0z;)(x;) = 1, (8/0z;)(x;) =0, (8/0z)(1) = 0.
2. (0/0z;)(w-2) = (8/0z;)(w)+w-(8/0z;)(z), where
w and z are words in variables {z;, z;'}.
One immediate consequence is that
9 1

5o (@) = -z

3.’12,'
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This follows from the calculations (8/8z;)(z;-z;")
(8/0z;)(1) = 0, and, using rule 2, (8/0z;)(z;-z;*) =
1+wi(6/6wi)(:c{1).

EXAMPLE

The partial derivatives of the equation zyzy 1z~ 1y~! are
computed in the following manner. Write the word as
(z)- (yxy~ 'z~ 1y~?) and apply rule 2. To differentiate the
second term, write it as (y)(zy 'z 'y~!) and use rule 2
again. Proceed in this way, factoring out one term at a
time. The final result is that the derivative with respect
to z is 1+ zy —zyzy lz~!. The derivative with respect
to y is £ — xyzy~! —zyzylz~ly~l. In the exercises you
are called on to fill in the details of this calculation, and
to compute some more complicated examples.

As a hint of things to come, note the following about
this example. The equation zyzy 'z ly~! is the defin-
ing equation for the group of the trefoil knot. If in the
derivative, 1+ zy — zyzy~1z~1, the variables are both re-
placed with ¢, then the polynomial 1 — ¢ 4 ¢2 results. This
is the Alexander polynomial of the trefoil. (Also, if the
substitution is made in z — zyzy~! — zyry~lz~ly~!, the
polynomial —t2+¢—1 results, which is the same as the
first modulo a multiple of +¢'.)

1

UsING THE Fox CALcuLus TO COMPUTE

THE ALEXANDER POLYNOMIAL

Here is a new algorithm for computing the Alexander poly-
nomial of a knot. Take any presentation of the group of
the knot found by the procedure outlined in Chapter 5.
The presentation will have one more generator than rela-
tion. Now form the Jacobian matrix consisting of all the
partial derivatives of the equations, and eliminate any one
column of the matrix. Substitute ¢ for all the variables that
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appear. Finally, take the determinant of the matrix that
results. This determinant is the Alexander polynomial.

In Chapter 5 it was shown that the group of the knot
illustrated in Figure 5.8 was generated by z, y, and z,
subject to the relations:

1 1

r =yz ey ey ey ey e = 10,

L lyzyz~ly e gy = 1.

Te = z'ly’lzywy'
(Recall that any one of the 3 relations is a consequence
of the other 2.) If, in the Jacobian, the column corre-
sponding to 8/8y is eliminated, the resulting matrix is
2x2. As an example, the (1,2) entry is 8/9z(r;) =
yz~! —yz~lzzy lzyz~lz~'. Substituting t for each vari-
able yields —1+¢. If the other derivatives are computed
and ¢ substituted, the resulting matrix is

_ (-t +4-2 —-t+1
A(t)*( —t+2 1—3t'1+t‘2>

Taking the determinant yields an Alexander polynomial
—2t2 +10t — 15+ 10t~ — 2t 72,

WHY THIS WORKS

The proof that this procedure actually produces the
Alexander polynomial is fairly long and technical. The
basic ideas are easily explained.

To begin, there is the following central observation.
One presentation of the knot group is obtained with no
algebraic manipulations. For each arc there is a gener-
ator and for each crossing there is a relationship. For
instance, at a right-hand crossing there is the relation
zizjry 'z;' = 1. If the Jacobian matrix for this set of
relationships is computed and then ¢ is substituted for all
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the variables, the resulting matrix is just the matrix used
in the combinatorial definition of the polynomial given in
Chapter 3. The algebraic manipulations that reduce the
number of variables in the presentation correspond to oper-
ations on the Jacobian matrix. A careful calculation shows
that none of these changes affect the final determinant.

EXERCISES
4.1. The knot 5; has knot group

1 1

(z, y | zyzyzy "y 7y ).

Compute its Alexander polynomial.

4.2. Find two generator presentations of the groups of the
knots 62, 63, 71, and 75. In each case use the presentation
to compute the Alexander polynomial.

4.3. Fill in the details of the calculation of the matrix A(t)
in this section.

4.4. If a knot diagram has n crossings, there is an n gen-
erator presentation of the knot group. Show that if this
presentation is used to compute the Alexander polynomial,
the result is the same as in the combinatorial calculation
in Chapter 3.






CHAPTER 7:
NUMERICAL INVARIANTS

A few methods for associating integers to knots have al-
ready appeared in the text. The genus is an important
example. Others include the signature, the determinant,
and the mod p rank. In this chapter many more will be
described. Some of these will seem to be very natural quan-
tities to study. Others, such as the degree of the Alexander
polynomial, may at first seem artificial; it is the relation-
ship between these invariants and the more natural ones
that is particularly interesting and useful.

It will be clear in this chapter that with the intro-
duction of each new invariant a host of questions arises
concerning its relationship with other invariants. Some of
these questions will be discussed, others will be presented
in the exercises. A few open questions will appear along
the way.

1 Summary of Several knot invariants have
Numerical Invariants been defined so far. These
are reviewed in this section.

In the next sections many new invariants will be described.

129
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GENUS
Every knot forms the boundary of an oriented surface
called a Seifert surface of the knot. The genus of a knot,
g(K), is the minimal genus that occurs among all Seifert
surfaces. Only the unknot has genus 0; the pretzel knots
form an infinite family of genus 1 knots. The proof of the
prime decomposition theorem was based on the result that
genus is additive under connected sum.

Another similar notion of genus is based on nonori-
entable surfaces. This concept plays a secondary role to
orientable genus, and will not be pursued.

MOD p RANK

Finding mod p labelings of a knot diagram can be reduced
to solving a system of linear equations mod p. The dimen-
sion of that solution space is called the mod p rank of the
knot. In Exercise 4.6 of Chapter 3 it was shown that, if
K has mod p rank n, then the number of mod p labelings
is p(p™ — 1). It follows that mod p rank is additive under
connected sum. (See Exercise 1.1.)

DETERMINANT, DET(K)

The determinant was first defined combinatorially. How-
ever, the simplest definition is based on Seifert matrices.
If V is a Seifert matrix for a knot K, then the determinant
of K, det(K), is the absolute value of the determinant of
V +V*t. Thus, the determinant of the connected sum of
knots is the product of their determinants (see Chapter
6).

SIGNATURE, o(K)

The Seifert matrix also provides a means of defining the
signature of a knot. If V is a Seifert matrix for K, then
o(K) is the signature of V + V*. Signature is additive
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under connected sum. See Exercise 3.6, Chapter 6, for a
proof. (w-signatures can also be defined using V'.)

As shown earlier, the right- and left-handed trefoils
have signature —2 and 2, respectively. Hence, the con-
nected sum of the two trefoils, called the square knot, has
signature 0. Connected sums of square knots provide an
infinite family of knots with signature 0.

DEGREE OF THE ALEXANDER POLYNOMIAL
Although not yet discussed, this invariant derives easily
from the polynomial itself. By multiplying by the appro-
priate power of ¢, the Alexander polynomial of a knot can
be normalized to have no negative powers of ¢, and so that
the constant term is nonzero. The degree of this polyno-
mial is called the degree of the Alexander polynomial.
The Alexander polynomial of a connected sum of
knots is the product of their individual polynomials (see
Chapter 6). Hence, the degree of the Alexander polynomial
adds under connected sum. An infinite family of knots, all
with Alexander polynomial 1 can be constructed from the
connected sums of copies of a single nontrivial polynomial
1 knot. Families containing only prime knots also exist.

EXERCISE

1.1. If a knot K has mod p rank n, then the number
of mod p labelings is p(p™ —1). Use this to show that the
number of labelings including ones with all labels the same
is given by p"*!. Use this to prove that mod p rank adds
under connected sum.

2 New Invariants The two invariants defined in
this section are the most nat-
ural in the study of knots. Surprisingly, although they are
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so simple to define their calculation turns out to be espe-
cially difficult, and the most natural questions concerning
them are unanswered.

CROSSING INDEX, C(K)

Each regular projection of a knot has a finite number of
double points. Different projections of a knot can have dif-
ferent numbers of double points, since Reidemeister moves
1 and 2 change the number of double points. The least
possible number of double points in a projection of a knot
is called the crossing index of the knot.

For example, the unknot has crossing index 0. It is
fairly easy to see that if a knot has a projection with one
or two crossings it is unknotted. Hence there are no knots
of crossing index 1 or 2. The trefoil has crossing index 3.

Although there are clearly only a finite number of
knots with a given crossing index, listing them all is diffi-
cult. The chart of prime knots in the appendix is arranged
by crossing index. The number of knots of a given cross-
ing index seems to grow very rapidly, but little is known
in detail about this number.

At the present time it is conjectured, but unproven,
that the crossing index adds under connected sum. (This
has been proved for knots with alternating projections; a
knot diagram is alternating if, travelling around the knot,
overpasses and underpasses are met alternately. This re-
sult for alternating knots is discussed again in Chapter 10.)
As a measure of the present state of ignorance, we cannot
rule out the possibility that the connected sum of two knots
can have crossing number less than either factor!

UNKNOTTING NUMBER, U(K)
Given a knot diagram, it is always possible to find a set
of crossings such that if each is switched from right- to
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left-handed or vice versa, the knot becomes unknotted.
One way to discover one set of such switches is to draw a
new knot diagram starting with the projection of the knot.
Trace the knot projection starting at a point p. Each cross-
ing point will be met twice in the tracing, and when it is
met for the second time, have that strand go under the
first. This is best understood via an example; the result of
this construction for a particular knot is illustrated in Fig-
ure 7.1. The proof that the algorithm produces an unknot
is left to the exercises.

> (O
&) &

Figure 7.1

For a given knot diagram several different choices of
crossing change can lead to the unknot, and the num-
ber of crossing changes that are required might depend
on the choice of diagram. The minimal number of cross-
ing changes that is required, ranging over all possible dia-
grams, is called the unknotting number of the knot.

Given that the definition is taken over all possible dia-
grams, the unknotting number seems difficult to compute,
and in general it is. However, only the unknot has unknot-
ting number 0. The n-twisted doubled knots considered in
Exercise 2.2 of Chapter 3 (see also Exercise 1.3 of Chapter
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6) provide an infinite family of unknotting number 1 knots.
They are distinguished by their Alexander polynomials.

How the unknotting number behaves under connected
sums is a mystery. It is easily proved that the unknotting
number of the connected sum of knots is at most the sum
of their unknotting numbers, and the conjecture is that
unknotting number is additive. Scharlemann has proved
that the connected sum of two unknotting number one
knots is always of unknotting number two.

A fascinating example concerning the unknotting
number was discovered by S. Bleiler. Figure 7.2 presents
two diagrams of the same knot, the second with more cross-
ing than the first. No two crossing changes in the first
diagram produces an unknot, but changing the indicated
crossings in the second diagram does unknot it.

Figure 7.2

Bleiler proved that to demonstrate that the knot has un-
knotting number 2 the crossing number of the diagram
used cannot have the minimal number of crossings for the
knot. (Figure 7.2 presents only one minimal crossing dia-
gram of the knot; there conceivably could be more.) The
next section includes the needed techniques to prove that
this knot has unknotting number > 2.

(3
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EXERCISES
2.1. Draw all knot diagrams having 2 crossings.

2.2. Prove that there are only a finite number of n-crossing
knots for each integer n.

2.3. Prove that the procedure outlined in the text actually
produces an unknotted curve.

2.4. Check that making the indicated crossing changes in
Bleiler’s example (Figure 7.2) produces the unknot. Show
that no two crossing changes in the first diagram gives the
unknot.

3 Braids and Bridges Although somewhat less in-

tuitive then the crossing in-

dex and the unknotting number, both of the invariants

described in this section have a long history in the study

of knots. The study of braids is particularly fascinating in

that it introduces group theory into the study of knots in
a completely new way.

A
I

(

BRAIDS
An n-stranded braid consists of
\ n disjoint arcs running vertically
in 3 space. The set of starting
\ points for the arcs must lie im-
mediately above the set of end-
\ points. Figure 7.3 illustrates a 5-
braid. A formal definition need

N

not be given, and could be sup-
plied by the reader.

A braid can be turned into
Figure 7.3 a link by attaching arcs to the
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top and bottom, as illustrated in Figure 7.4. Braids are
of interest in the study of knots and links because of a
theorem that states that every knot and link arises from a
braid in this way. The proof is constructive, as follows.

Draw the knot polygo-
nally, and orient it. Also pick
a point in the projection plane
which does not lie on the knot.
This point will be called the
braid azis. The goal of the
construction is to arrange for
every segment of the polygon
to run clockwise with respect
to the chosen point. If some
segment runs counter clock-
wise, it can be divided up
into several smaller segments,
each of which can be pulled
across the axis. This is illus-
trated in Figure 7.5. Exercise

TS
—
(_L

)

Figure 7.4

2 asks that you apply this algorithm to several knots to

draw them as closed braids.

1Y

Figure 7.5
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Different braids can close to form the same knot; the
braid indez of a knot, denoted brd(K), is defined to be the
minimum number of strands that are required in a braid
description of a knot. Braid index is subadditive under
connected sum; that is, brd(K#J) < brd(K) +brd(J). To
see this, note that given braid descriptions of two knots,
there is a simple way to construct a braid description of
their connected sum. This is illustrated in Figure 7.6.

g A
3

s — Vo
An @8

Artin introduced braids into the study of knots. What
is most fascinating about braids is that there is a natural
way to form groups using them. Given two n-stranded
braids, placing one on top of the other produces a new
braid. This operation induces a group operation on the
set of equivalence classes of n-stranded braids, where two
braids are equivalent if one can be deformed into the other
fixing all endpoints. In the exercises you are asked to derive
a few properties of this group, called the braid group.

One important theorem in the study of braids deserves
notice. As was mentioned, two distinct braids can produce
the same knot or link when closed up. For instance, sta-
bilization, as indicated in Figure 7.7, does not effect the

Figure 7.6
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resulting link. Also, if a given braid is multiplied on the
right and left by a second braid and its inverse (in the
braid group) the resulting links are the same. This oper-
ation is called conjugation in the braid group. A theorem

Y\
\
— \K‘

[\ X

Figure 7.7

of Markov states that if two braids give the same knot or
link, then each can be repeatedly stabilized and conjugated
so that the same braid results. This theorem, along with a
knowledge of the structure of the braid group, was crucial
for Jones’ discovery of new polynomial invariants of knots.
More on that later.

BRIDGE INDEX, brg(K)

Any projection of a knot can be perturbed so that there are
a finite number of relative maxima. Figure 7.8 illustrates
a knot with the maxima and minima marked. You can
prove that the number of minima equals the number of
maxima. Different diagrams of a knot can certainly have
a different number of maxima. The minimum number of
such maxima (taken over all possible projections) is called
the bridge index of the knot, denoted brg(K).
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It should be clear that only
the unknot has bridge index
1. Hence the bridge index of
the trefoil is two, as can be
seen in its standard projec-
tion.

The first 3-bridge knot
in the table of prime knots
is 8. A theorem proved
by Schubert states that the
bridge index behaves nicely
under the connected sum op-

A/

Figure 7.8

eration.

0 THEOREM 1.
brg(K) +brg(J) — 1.

2
i5)

Figure 7.9

For knots K and J, brg(K#J) =

The proof is quite difficult.
One step is demonstrated eas-
ily in a diagram; the bridge
index satisfies the inequal-
ity brg(K#J) < brg(K)+
brg(J) —1. Figure 7.9 illus-
trates the connected sum of a
2-bridge knot and a 3-bridge
knot drawn so that it has 4
bridges.

A simple corollary of the
Schubert theorem is that 2-

bridge knots are prime (See Exercise 3.3.) Even this is a
difficult geometric exercise without the aid of Schubert’s

general result.
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EXERCISES

3.1. The n stranded braid group is generated by the twists
o; which put a half twist between the i-th and (i +1)-th
strand, as indicated in Figure 7.10 below. Show that the
two relations hold: ¢;0:410; = 0i410i0:41, and oj0; =
0i0j, [t —j| > 1. (In fact, these two sets of relations gen-
erate all the relations in the braid group.)

o3 ot
Figure 7.10

3.2. Draw the knots 4, and 5, as closed braids.

3.3. How does Theorem 1 imply that 2-bridge knots are
prime?

3.4. Any 2-bridge knot can be drawn with one strand
straightened and not crossing any of the other strands,
as illustrated in Figure 7.11 below. Describe a method
for converting a 2-bridge diagram into this form. (With
this observation the classification of 2-bridge knots can be
stated. Any 2-bridge knot is determined by a sequence of
integers, [e1,¢2,...,¢,], where ¢; is the number of right- or
left-handed twists, depending on i odd or even.)

i
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The knot illustrated to the left
corresponds to [2,2,3]. To such
a sequence one can form the
continued fraction,
a c2+ % \

Now Schubert proved that two 2-
hridge knots, with corresponding
(ractions p/q and p’/q’, are equiv-
alent if and only if p = p’ and
q— ¢ is divisible by p.)

3.5. Apply your algorithm from .

Iixercise 3.4 above to illustrate Figure 7.11

the knots 73 and 8; in standard form. What are the asso-
ciated fractions for each?

CC

3.6. How does the continued fraction corresponding to a
2-bridge knot compare to that of its mirror image? Which
two bridge knots are equivalent to their mirror images?

4 Relations between Many of the numerical invari-
Numerical Invariants ants studied so far are closely
related. For instance, the

combinatorial algorithm for computing Alexander polyno-
mials immediately implies that the degree of the Alexander
polynomial is less than the crossing number. Hence, the
(2,n)-torus knot cannot be drawn with fewer than n cross-
ings; the degree of its polynomial was discussed in Chapter
3, Section 5, and shown to be n — 1. This section will fo-
cus on demonstrating a few of the less obvious connections.
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The next section will deal with the independence of some
of the invariants.

THE CROSSING NUMBER AND THE GENUS

Recall that Seifert’s algorithm provides a means of building
a Seifert surface for a knot from its diagram. In Exercise
3.4 of Chapter 4, it was show that the genus of the resulting
Seifert surface is given by 2¢g = cr — s + 1, where cr is the
crossing number of the diagram and s is the number of
Seifert circles. Unless K is unknotted, s > 1, so 2g <
cr — 1. For the trefoil knot, 2g = cr — 1.

BRIDGE INDEX AND MOD p RANK

Any mod p labeling of an n-bridge knot is determined by
the labels on the n top arcs, or bridges. Hence, there can
be at most an n-dimensional space of labelings. Taking
into account the 1-dimensional space of trivial labelings,
one has that the mod p rank of a knot is at most the
brg(K)—1. As an application, the (3,3,3)-pretzel knot
has mod 3 rank 2, and so cannot be drawn with 2 bridges.
It is clearly a 3-bridge knot.

SIGNATURE AND THE UNKNOTTING NUMBER
Arguments concerning the unknotting number are much
more difficult. The result here states that 2u(K) > |o(K)|.
The proof depends on showing that changing a crossing in
a knot changes the signature by at most 2.

Fix a knot diagram and a crossing in the diagram. If
Seifert’s algorithm is applied to the diagram the resulting
Seifert surface is built from many disks and the given cross-
ing corresponds to a band joining two of the disks. To find
the Seifert matrix the surface must be deformed into a sin-
gle disk with bands added. For the calculation this must
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be done in such a way that the given band corresponds to
a single band on the final surface.

To see that this is possible, cut the Seifert surface
across the band of interest. The remaining surface can be
assumed to be connected. (Why?) Deform it into a single
disk with bands added. The original Seifert surface can
be recovered by reattaching the band that was cut to the
disk. Order the bands so that this final band is the last in
the ordering.

Changing the crossing of interest will have the effect
of twisting the last band. This will in turn only effect the
last diagonal entry of the Seifert matrix, V. Hence, the
diagonalization of V + V' only changes in its last entry,
and the signature can change by at most 2. The signature
of Bleiler’s example is 4, and this is how he proves it does
not have unknotting number 1.

MOD p RANK AND UNKNOTTING NUMBER

In general the unknotting number is at least as large as
the mod p rank, for all p. All that will be proved here
is that unknotting number 1 knots have mod p rank < 1.
The reader should interpret the statement and argument
in terms of colorings. (Colorings are often used in expos-
itory talks on knot theory to prove that the trefoil is not
unknotted. The following argument translates into an easy
proof of the much subtler fact that the square knot cannot
be unknotted with a single crossing change, regardless of
how it is drawn.)

Suppose that a knot K has unknotting number 1, and
fix a diagram for K and the crossing which changes K into
an unknot when reversed. If there is a nontrivial labeling of
K for which both the over and undercrossings are labeled
0 a contradiction arises. The given labeling remains con-
sistent when the crossing is changed, yielding a nontrivial
labeling of the unknot.
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If the knot has mod p rank > 1, then there are two
linearly independent labelings, both of which are 0 on the
overcrossing. Neither can be 0 on the undercrossing by the
previous argument. However subtracting some multiple
of one labeling from the other yields a labeling with the
bottom label 0. (Recall that the multiple is taken mod p.)
The new labeling is nontrivial by linear independence.

EXERCISES
4.1. Prove that for any knot K, the degree of the Alexander
polynomial is at most twice the genus.

4.2. Prove that the |o(K)| < 2¢(K).

4.3. (a) Prove that the bridge index of a knot is at most
equal to the braid index.
(b) Find an example of a 2-bridge link that has braid index

greater that 2. (Linking numbers should help here.) Find
a similar example of a knot.

4.4. (a) Prove that for n even, an n-crossing knot has genus
at most (n—2)/2.

(b) Prove that if K has crossing number n, with n odd,
then either K is a (2,n)-torus knot, or K has genus at most
(n—3)/2. (The torus knot has genus (n —1)/2.)

5 Independence of While some numerical invari-
Numerical Invariants ants are closely related, oth-
ers are completely indepen-

dent. In most cases, this is demonstrated by construct-
ing families of examples. Some of the families of examples
are constructed from a few basic examples and connected
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sums. Others are much more complicated. Here a few will
be surveyed, with the main focus on bridge index.

BRIDGE INDEX AND THE DEGREE OF THE ALEXANDER
POLYNOMIAL

There is no relationship between the degree of the Alexan-
der polynomial and the bridge index of a knot. The (2,n)-
torus knots provide examples of two bridge knots with ar-
bitrarily high degree Alexander polynomial. On the other
hand, by forming the connected sum of many polynomial
1 knots, a polynomial 1 knot with large bridge index is
created.

INDEPENDENCE OF mod p RANKS

The trefoil knot has mod 3 rank 1 and mod 5 rank 0;
the (2,5)-torus knot has mod 3 rank 0 and mod 5 rank
1. Hence, the connected sum of k trefoils and j 5-twist
knots has mod 3 rank k and mod 5 rank j. It follows that
in general there is no relationship between the mod 3 and
mod 5 ranks.

Given any finite set of primes, similar examples can
be constructed showing the independence of mod p ranks.
Note that it is not possible to find a knot with specified
mod p ranks for all primes. For a given knot only a finite
number of the mod p ranks are positive. The determinant
of a knot provides a bound on the number of primes p for
which the mod p rank can be positive. Exercise 5.1 asks
for a precise bound.

SIGNATURE AND BRIDGE INDEX

The (2,n)-torus knot knot has signature n—1, and is a
two-bridge knot. (See Exercise 3.9, Chapter 6) Hence no
bound on the signature can be based on the bridge index.
On the other hand, the connected sum of square knots has
0 signature, but large bridge index, so no bound on the
bridge index follows from the signature.
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UNKNOTTING NUMBER AND THE BRIDGE INDEX

The (2,n)-torus knots give a family of 2-bridge knots with
arbitrarily high unknotting number. (Consider the signa-
ture.) The process of doubling a knot, as illustrated in
Figure 7.12, produces unknotting number 1 knots of large
bridge index.

Figure 7.12

Schubert proved that if a knot is doubled the bridge
index of the resulting knot is twice that of the original
knot, except in one special case. (See Exercise 5.3.) It is
clear that the bridge index of a doubled knot is at most
twice that of the original knot, but showing that there is
an equality is a lengthy and delicate geometric argument.

Without that delicate geometry, it is possible to prove
that certain doubled knots have high bridge index, using
the algebraic methods of Chapter 5, specifically labelings
from the symmetric group, S,. One part of the argument
is based on the following theorem.

0 THEOREM 2. If a knot K can be labeled with trans-
positions from S, then brg(K) > n.
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PRrROOF

Given such a labeling of K, the set of labels generates
S.. However, the labels on the bridges determine all the
other labels, as was seen in Chapter 5. Hence, the labels
that occur on the bridges must generate S,. According
to Exercise 1.8 of Chapter 5, S, cannot be generated by
fewer than n — 1 transpositions. The result follows. O

To apply this to the construction of examples, suppose
that one starts with a knot diagram that has been consis-
tently labeled with 3-cycles from S,. (It is not required,
or for that matter even possible, for the labels to generate
Sp.) This labeling leads to a consistent labeling of some
double of the knot using transpositions, as follows: On the
bridges of the knot, if the original arc was labeled with the
3-cycle (a,b,c), label the two strands with (a,b) and (a,c).
The consistency condition leads to a labeling of the rest
of the doubled knot. Any problem with consistency at the
bottom can be cured by adding twists.

It may not be immediately clear why a consistent la-
beling occurs in general. The following observations should
clarify the situation. The two transpositions on a parallel
pair of strands on a bridge were chosen so that their prod-
uct is the 3-cycle with which the original strip was labeled.
When the consistency condition is used to determine the
rest of the labels, this property for adjacent pairs of labels
is true everywhere. That is, the labels on any parallel pair
of arcs have product equal to the 3-cycle that the original
arc of the knot was labeled with. It is now easily checked
that along the bottom strands, if the labels do not match
up, twists can be added to the pair of strands so that they
do match.

The discussion above shows how, given a knot which is
consistently labeled with 3-cycles from S,,, it is possible to
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produce some double of the knot which can be consistently
labeled with transpositions from S,,. These transpositions
will generate S, if the original set 3-cycle labels formed a
transitive set. (A set of permutations is called transitive if
for every positive integer 7 < n, some product of elements
in the set maps 1 to i.) The proof of this algebraic condi-
tion is left to the reader as another exercise concerning the
symmetric group. The construction is completed by not-
ing that the connected sums of k (2,5)-torus knots can be
consistently labeled with a transitive set of 3-cycles from
S34+21- Hence, an explicit example is constructed by form-
ing the connected sum of k (2,5)-torus knots, consistently
labeled with a transitive set of 3-cycles from S34ak.

GENUS AND THE BRIDGE INDEX

The (2,n)-torus knots provide examples of 2-bridge knots
of arbitrarily high genus. On the other hand, doubled
knots have genus 1. Figure 6.5 illustrates a genus one
surface bounded by a double of the unknot; the right-hand
band on that surface can itself be knotted so that the re-
sulting surface forms a genus 1 Seifert surface for an arbi-
trary doubled knot. It was just shown that doubled knots
can have arbitrarily large bridge index.

EXERCISES

5.1. The number of primes for which a knot can have
nontrivial mod p labelings is bounded by a function of the
determinant. Find one such bound.

5.2. Why do doubled knots all have unknotting number 1?
5.3. Find the example of a double of a knot for which the

bridge index is not twice the bridge index of the original
knot.

5.4. Check the details of the construction of the label-
ing of a doubled knot with transpositions, given a 3-cycle
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labeling of the knot being doubled. In particular, check
that consistency can be assured by adding the appropriate
twists at the bottom.

5.5. Show that the connected sum of k (2,5)-torus knots
can be labeled with 3-cycles from Sz, so that the set of
labels form a transitive set.

5.6. Figure 7.13 illustrates a genus 3 Seifert surface. Show
that its boundary has unknotting number 1. Show that
its Alexander polynomial is of degree 6, and hence the
knot is exactly genus 3. Generalize this example to find
unknotting number 1 knots of arbitrarily large genus. It is
more difficult, but possible, to show that there are genus
1 knots of high unknotting number.

W

Figure 7.13
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CHAPTER 8:
SYMMETRIES OF KNOTS

Knot diagrams can appear symmetrical, and for those that
do not, the lack of symmetry is often an artifact of the
diagram, and is not inherent in the knot itself. For in-
stance, Figure 8.1 presents two diagrams for the knot 7s.
The first shows no apparent symmetry, while the second is
quite symmetrical; a rotation of 180 degrees about a point
in the plane leaves the diagram unchanged. As the exam-
ple indicates, finding symmetrical diagrams for a knot can
be a challenging task. On the other hand, powerful tools
are available for proving that a knot does not have hidden
symmetries.

0

z
</

Figure 8.1

Section 1 expands on some of the basic types of sym-
metry discussed earlier. (For example, it was shown that

151
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the trefoil is distinct from its mirror image using the signa-
ture; the relationship between a knot and its mirror image
will be discussed further.) The rest of the chapter is de-
voted to another type of symmetry, periodicity; roughly
stated, a knot is called periodic if it has a diagram that is
carried back to itself when rotated about the origin; Figure
8.1 shows that 7¢ is periodic, with period 2.

The two main results of the chapter are theorems of
Murasugi and Edmonds. The first places algebraic restric-
tions on the Alexander polynomials of periodic knots. The
second restricts their Seifert surfaces. Together these two
theorems provide powerful means for studying the periods
of knots. The examples in the final section will demon-
strate the beautiful and subtle interplay between geometry
and algebra.

1 Amphicheiral and Given an oriented knot, K,

Reversible Knots reversing the orientation cre-

ates a new oriented knot

called its reverse, and denoted K". Changing all of its

crossings yields an oriented knot denoted K™. In Chap-

ter 2, Exercise 5.6 asked you to prove that changing the

crossings in a diagram for K yields a knot equivalent to

the mirror image of K, corresponding to the reflection of
its diagram through the y-axis of the knot diagram.

DEFINITION. An oriented knot K is called reversible
if K is oriented equivalent to K". It is called positive am-
phicheiral if it is oriented equivalent to K™, and negative
amphicheiral if it is oriented equivalent to K™™.
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EXAMPLES

Figure 8.2 illustrates that a 180 degree rotation about the
y-axis carries the knot 4; (the figure-8 knot) to itself, but
reverses its orientation. Hence it is reversible. The reader
should have no trouble showing that if all the crossings
are changed, the resulting knot can be deformed to appear
again as in the diagram. This shows that the figure-8 is
amphicheiral, and, since it is reversible, it is both positive
and negative amphicheiral. (See Exercise 1.1.)

Q@

Figure 8.2
Figure 8.3 illustrates the (3,5,3)-pretzel knot. It too

is reversible; rotate it 180 degrees about the vertical axis in
the diagram. It is now known

that the only reversible pret-

zel knots are those with two

of the bands having an equal

’) number of twists. A signa-
X ture calculation shows that

2 2 ) this pretzel knot is neither
j positive nor negative amphi-

N

o0

cheiral. (It follows from Ex-
ercise 1.8 of Chapter 6 that
the signature of a knot and
Figure 8.3 its mirror image are nega-
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tives.) Finding knots that display one, but not both, forms
of amphicheirality is at least as difficult as constructing
nonreversible knots.

STRONG SYMMETRY

Although reversible and amphicheiral knots contain sym-
metries, the symmetry may be hidden. That is, it may
be the case that the symmetry cannot be displayed in a
diagram. In particular, some knots are reversible, but the
reversal cannot be carried out in a simple manner as in the
previous examples.

DEFINITION. A knot is called strongly reversible if it
is equivalent to a knot that is carried to its reverse by either
a 180 degree rotation about the y-axis, or reflection through
the (y,z)-plane.

If the standard diagram for
the (3,5,3)-pretzel knot is ro-
tated by 180 degrees about
the y-axis, then the represen- /_\
tative for the knot is clearly
fixed. On the other hand,
the connected sum of the left-
and right-handed trefoils (see \-/
Figure 8.4) is not invariant
under that rotation; it clearly
is invariant when reflected
through the (y,z)-plane. Figure 8.4
It was once conjectured that a reversible knot is nec-
essarily strongly reversible. This is now known to be false.
The double of a knot is always reversible, as the reversal
can be carried out inside a torus, as illustrated in Figure
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@

Figure 8.5

8.5. However, Whitten proved that for a double of a knot
to be strongly reversible, the original knot itself has to
be reversible. The proofs depend on difficult geometric
constructions.

There are also similar notions of strong amphicheiral-
ity. A knot K is called strongly positive amphicheiral if
there is a self-map T' of 3-space with T2 = identity, such
that T'(K) = K™. Similarly K is called strongly negative
amphicheiral if there is such a T with T'(K) = K™™. As
our only example, the connected sum K# K™ is strongly
negative amphicheiral. Such a connected sum is illustrated
in Figure 8.4. Let T be rotation by 180 degrees about the
y-axis. The effect of T’ is the same as changing all the cross-
ing in the diagram. As with reversibility, examples exist
demonstrating the distinction between the various notions
of amphicheirality.

EXERCISES
1.1. Prove that for reversible knots, being positive am-
phicheiral is equivalent to being negative amphicheiral.

1.2. (a) Verify that 63 is amphicheiral.
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(b) Show that 63 is reversible.
1.3. Verify that the second knot in Figure 8.1 is 7.

2 Periodic Knots

For any integer ¢ > 2, let R,
denote the linear transforma-

tion of R® consisting of a rotation about the z-axis of 360/q
degrees. For any knot K, the diagrams for K and R,(K)
differ by a rotation of 360/q degrees about the origin.

0O DEFINITION. A knot K is called periodic with period
q if K has a diagram which misses the origin and which
is carried to itself by a rotation of 360/q degrees about the

origin.

Figure 8.6

The diagram in Appendix 1
for the trefoil, 3;, displays its
3-fold symmetry; the trefoil
is periodic of period 3. Simi-
larly, the diagrams of 5; and
7, show that they have pe-
riods 5 and 7, respectively.
Figure 8.6 is another diagram
of 5;, showing that it is also
a period 2 knot. The first di-
agram in the chapter, Figure
8.1, displayed 7¢ as a period

2 knot, although no symmetry at all is evident in the fig-
ure in Appendix 1. The reader should scan through the
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appendix and identify the clearly periodic diagrams.

THE QUOTIENT KNOT AND LINKING NUMBERS

Given a periodic diagram for a knot, there is a simple pro-
cedure for constructing a simpler knot, called the quotient
knot.

41=

N

In Figure 8.7, two periodic knots and their quotients
are drawn. Knots of period 2 and 3 are drawn on the left.
Their respective quotients are drawn on the right. Note
that for the first the quotient is itself unknotted, and for
the second the quotient is the Figure-8 knot.

o

Figure 8.7
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The construction just given can be reversed: given a
knot diagram that misses the origin and an integer q >
2, one can construct a knot, or link, having the original
knot as a quotient. Figure 8.8 illustrates a case in which
this so-called covering link has more than one component.
Deciding whether or not the covering link is a knot calls
for the introduction of linking numbers into the study.

Figure 8.8

Given a diagram for a knot which misses the origin,
choose an orientation. Also, pick a ray from the origin
such that none of the points of intersection of the ray and
knot are tangential. (For a polygonal knot, choose the ray
so that it misses all the vertices of the knot.) The linking
number of the diagram with the 2-axis, to be denoted ), is
computed as the absolute value of the intersection number
of the knot with the ray. The intersection number is the
number of intersection points at which the knot crosses
the ray in the clockwise direction minus the number of
counterclockwise intersections. For the knot diagram in
Figure 8.1, A = 5. For the knots in Figure 8.7, the linking
numbers are A = 1 and A = 3. For the knot in Figure 8.8,
A=0.
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If a knot diagram is periodic, it is easily seen that the
linking number of the knot with the 2-axis is the same as
the linking number of the quotient with the z-axis. (See
Exercise 2.5.) Conversely, if a periodic diagram for a knot
arises from the covering construction, the linking numbers
are the same. It remains to determine when the covering
link is a knot.

0O THEOREM 1. If a knot diagram for K misses the ori-
gin, the corresponding q-fold covering link L has a sin-
gle component if the linking number is relatively prime to
q. More generally, the number of components in L is the
greatest common divisor of the linking number \ and q.

PROOF

Observe that neither changes in crossings nor deformations
that do not cross the origin affect the linking number or
the number of components in the cover. Such deformations
determine periodic deformations of the covering link (these
are called lifts of the deformation on the quotient), and
crossing changes clearly have no effect on the algorithm
that computes the linking number.

Figure 8.9
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Now, by an appropriate -
sequence of crossing changes
and deformations, the knot
diagram can be transformed
into one that runs monotoni-
cally around the axis. Cross-
ing changes are used to elim- /
inate any clasps that occur.

This is illustrated in Figure

8.9; after changing the indi-

cated crossing, a deformation

(that does not cross the ori-

gin) results in a knot diagram

that runs clockwise about the Figure 8.10
origin. Denote the new knot by K'.

Pick a ray from the origin meeting the knot in A
points, and label the points with integers from 1 to A.
Given any point of intersection on the ray, a new point is
determined by travelling once around the origin along K”.
Hence, a permutation p in S), is determined. For the knot
illustrated in Figure 8.10, p = (13452).

Next observe that as K’ is connected, the correspond-
ing permutation is a A-cycle. In general, K’ would have
1 component for each cycle in a decomposition of p as a
product of disjoint cycles, including 1-cycles.

The cover of K’, say L', similarly corresponds to a
permutation, p’, and it is easily seen from the construction
that p' = p?. Now if q is relatively prime to A then the
g-th power of a A-cycle is again a A-cycle. More generally,
the g-th power of a A-cycle is the product of d disjoint A/d
cycles, where d is the greatest common divisor of ¢ and .
Proving this is one more exercise concerning the symmetric

group. O
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Note that different pe-
riodic diagrams of a given
knot can have different link-
ing numbers. The trefoil has
a periodic diagram of period
3 and linking number 2. It
also has a periodic diagram of
period 2 and linking number
3, as is shown in Figure 8.11.
(A consequence of results of
the next section imply that,
for a given knot, any two di-

Figure 8.11

agrams of the same period also have the same linking num-

ber.)

EXERCISES

2.1. Figure 8.1 shows that 7¢ can be described as the
closure of the square of a 5-strand braid. Show that the
same is true for 63. The resulting periodic diagram of 63

will have 8 crossings.

Figure 8.12

2.2. Find 2 crossing changes
that convert the knot illus-
trated in Figure 8.12 into a
braid about the origin.

2.3. The braid that results
from the crossing changes in
Exercise 2 determines a cyclic
permutation. Find it.

2.4. Does the statement of
Theorem 1 hold when the
linking number is 0?7 Recall

that the greatest common divisor of 0 and q is q.
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2.5. In the definition of period, it was required that the
knot diagram misses the origin. Why is this relevant only
in the case of period 27

2.6. Show that the linking number of a periodic knot with

the z-axis is the same as the linking number for the quo-
tient knot.

3 The Murasugi Murasugi gave simple but

Conditions powerful criteria for testing

a knot for possible periods;

these criteria were based on the Alexander polynomial.

He discovered that if a knot has a periodic diagram, then

the Alexander polynomial of the knot and its quotient are
closely related.

Suppose that a knot K has period ¢ = p", with p
prime. Let J denote the quotient knot of a period ¢ dia-
gram of K, and let A be the linking number of J with the
axis.

THEOREM 2. (Murasugi Conditions) (1) The Alezan-

der polynomial of J, A;(t), divides the Alexander polyno-

mial of K, Ak(t).

(2) The following mod p congruence holds for some inte-
ger i:

Ag(t) = £t (A;@)? QA+t + 2 +t*"1)271 (mod p).
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PRrROOF
The proof of these congruences consists of a lengthy and
clever argument in matrix manipulation. Although the
details cannot be presented, the idea is fairly simple.

To compute the Alexander polynomial one begins with
a labeling of the knot diagram. If the diagram is peri-
odic the labeling can also be chosen to be periodic. For
example, if in the quotient knot an arc is labeled z;, in
the covering knot the various lifts of that arc can be la-
beled z},z2,...,z]. Hence, the corresponding Alexander
matrix decomposes into blocks corresponding to the sets
{z}}, {z?},...,{z?}. The individual blocks are closely re-
lated to the Alexander matrix of the quotient knot. It is
perhaps not surprising that the determinant of the large
matrix is related to the g-th power of the determinant of
the quotient knot. The details of the proof consist of a
careful study of the relationship. ]

One comment about the sec-
ond condition offers a little
insight. The simplest con-
struction of a period ¢, link-
ing number ), knot with quo-
tient J is given by lifting
the diagram in Figure 8.13.
The covering knot consists
of a (g,)\)-torus knot with ¢
copies of J added on. Condi-
tion 2 states that any period
q knot with the same quo-
tient and linking number has the same polynomial as this
basic example, modulo p. Essentially, changes in the di-
agram of the quotient only change the polynomial of the
covering by multiples of p.

Figure 8.13
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PERIODIC KNOTS AND MURASUGI’S CONDITIONS

To begin, a few examples of periodic knots are presented
to demonstrate Theorem 2. The trefoil has a period 3
diagram with quotient the unknot and A\ = 2. Condi-
tion 1 is automatically satisfied. Condition 2 implies that
the polynomial of the trefoil, £2 —t + 1, should be equal to
(t+1)? (mod 3). Since 2 = —1 (mod 3) this congruence
holds.

The period 2 diagram of 7¢ in Figure 8.1 has quotient
the unknot and A = 5. Again, Condition 1 is immediate.
Condition 2 states that the Alexander polynomial of 7¢
should be congruent to ¢4+t +¢2+t+1 (mod 2). The
polynomial is in fact ¢4 — 5¢3 + 7t2 — 5t + 1, so the congru-
ence holds.

EXAMPLES OF CONSTRAINTS ON THE PERIOD OF A KNOT
Theorem 2 provides a powerful means of proving that a
knot does not have certain periods. Before presenting ex-
amples, two comments concerning polynomials with mod p
coeflicients are needed. First, if p is prime then polynomi-
als factor uniquely mod p into irreducible polynomials. In
this setting uniqueness means that the factors in any two
factorizations can be paired so that each pair differs by at
most multiplication by a constant. Second, if polynomials
f and g have mod p degrees d; and ds respectively, then
their product has mod p degree d; + d;. Here the mod p
degree is the highest degree term with coefficient not di-
vigible by p. Both these facts are proved in introductory
texts in algebra.

The following arguments depend on apparently ad hoc
degree calculations. The exercises will develop and clarify
the procedures.

As a first application, the only periods of the trefoil
are 2 and 3. First, suppose that it has period q = p”, with



SYMMETRIES OF KNOTS 165

p prime. If ¢ > 3 then Condition 2 quickly implies that
either A (t) has degree greater than 2, or degree 0, neither
of which is the case. To deal with composite powers, note
that if a diagram for a knot is of period g, it is also of period
¢ for all divisors ¢’ of q. The only case that remains for the
trefoil is period 6. But a period 6 diagram for the trefoil
is also a period 3 diagram, and using Condition 2 one can
conclude that A\ = 3. At the same time, it would be a
period 2 diagram for the trefoil, and Condition 2 would
imply that A = 2, contradicting the previous calculation.

As another example, consider the knot 942, with poly-
nomial Ak (t) = t* — 2t3 + 12 — 2t + 1. The following argu-
ment shows that Theorem 2 implies that 945 has no peri-
ods. Note that to show this it is sufficient to prove that
942 has no prime periods, p.

Degree considerations arising from Condition 2 imply
that p < 5. For p = 5, degree considerations imply A = 2
and that A;(t) has mod 5 degree 0. Condition 2 cannot
be satisfied even in this case, as Ax(t) # (t+1)* (mod 5).

The primes 2 and 3 require individual attention. For
p=3,Ak(t) = t*+83+t+t+1 (mod 3), which is ir-
reducible; it is easily checked that ¢4 4¢3 +¢2+t+1 has
no mod 3 roots, and hence no linear factors in its mod 3
factorization, and a more careful check shows that it has
no quadratic factors in a mod 3 factorization. Condition 2
then applies to show that the knot cannot have period 3.

To check period 2, note that

Ak (t) = (2 +t+1)®> mod 2,

and that t2 +t+ 1 is irreducible mod 2. Hence from Con-
dition 2, A = 1, and the quotient knot has polynomial
t?+t+1 (mod 2). However, Ak (t) is irreducible, so Con-
dition 1 rules this out.
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EXERCISES
The exercises begin with a definition which will simplify
notation.

DEFINITION. The total degree of a polynomial is the
difference between the degrees of its highest and lowest de-
gree nontrivial terms. The mod p total degree is the differ-
ence between the degrees of the highest and lowest degree
terms having coefficients not divisible by p.

3.1. Explain why the total degree of a product of two
polynomials is the sum of their total degrees. Show this is
also true mod p, for prime p.

3.2. Use the symmetry of the Alexander polynomial to
show that the Alexander polynomial of a knot always has
even total degree, integrally and mod p.

3.3. Apply Condition 2 to show that if a knot has prime
power period ¢ = p" then its polynomial has total mod p
degree 2kq + (g — 1)(A — 1), where k is a nonnegative inte-
ger and ) is relatively prime to p.

3.4. (a) Use Exercise 3.3 to show that if a knot has prime
period p and the mod p total degree of its Alexan-
der polynomial is 2, then p=3 (k =0, A =2) or
p=2(k=0,A=3).

(b) Show that if a knot has prime period p and the
mod p total degree of its Alexander polynomial
is 4, then either p =5 (k =0, A\ =2) orp = 2
(k=1,A=1or k=0, A=15). (Remember that
A and p are relatively prime.)

(c) If a knot has prime period p and the mod p total
degree of its Alexander polynomial is 6, what are
the possibilities for p and the corresponding k and
A?
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3.5. Show that if a knot has period 7 and Alexander poly-
nomial of mod 7 total degree 6 then its Alexander polyno-
mial is ¢ ~ 5+ ¢4 — 3+ 42—t +1 (mod 7).

3.6. Show that no knot of 8 or fewer crossings has prime
period 11 or more.

3.7. Show that the only knot with fewer than 9 crossings
of period 7 is 7;.

3.8. Show that if a knot has period 5 and Alexander poly-
nomial of mod 5 total degree 4 then its Alexander polyno-
mial is t* — > +¢> —t +1 (mod 5). Use this to show that
the only knot with fewer than 9 crossings of period 5 is 5;.

3.9. Show that if the Alexander polynomial of a knot is
3t2 — 5t + 3, then the Murasugi conditions do not rule out
period 3. State a general result encompassing this exam-
ple.

3.10. Show that if the Alexander polynomial of a knot
factors as the product of two irreducible cubics, and equals
(t+1)® (mod 3) it cannot have period 3.

4 Periodic Seifert If Seifert’s algorithm for con-
Surfaces and structing Seifert surfaces for
Edmonds’ Theorem a knot is applied to the pe-
riodic diagram of a knot, the

resulting surface displays the same periodic symmetry as
the knot. Rather than call such a surface periodic, it is
usually called equivariant . In general, a knot is called pe-
riodic if it can be deformed in such a way that it is fixed
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by the rotation R,; a Seifert surface, F, is called equivari-
ant, of period g, if it can be deformed so that R,(F) = F.
Hence, Seifert’s algorithm implies that every period ¢ knot
bounds an equivariant Seifert surface of period gq.

Equivariant Seifert surfaces become a useful tool with
the use of the following theorem of Edmonds.

THEOREM 3. If a knot K is of period q, then there
exists a period q equivariant Seifert surface, F, for K, with
genus(F) = g(K).

As was noted earlier, Seifert’s algorithm applied to a
knot diagram might not produce a minimal genus Seifert
surface, and for periodic knots the algorithm is no more
efficient. Initially there is no reason to expect that symme-
tries of knots would be so strongly reflected in the surfaces
that they bound.

The construction of a minimal genus equivariant
Seifert surface involves a geometric technique not men-
tioned earlier, the use of minimal, or area minimizing, sur-
faces. If K is periodic, select a representative which is
fixed by the rotation about the z-axis. Deep analytic re-
sults along with topological arguments imply that among
all least genus Seifert surfaces for the knot there is one
of least area. Edmonds proved that this area minimizing
surface is equivariant.

THE RIEMANN-HURWITZ FORMULA AND THE PROPER-
TIES OF EQUIVARIANT SURFACES

In order to apply Theorem 3, the properties of equivari-
ant surfaces must be developed. If K is periodic and has
quotient knot J, then a Seifert surface for J can be lifted
to give an equivariant Seifert surface for K. Conversely,
any equivariant Seifert surface for K determines a Seifert
surface for J. Figure 8.14 illustrates an equivariant view of
the (3,3,3,)-pretzel knot, and its quotient knot. If Seifert’s



SYMMETRIES OF KNOTS 169

algorithm is applied to these diagrams, then the resulting
surfaces are equivariant. The pretzel knot bounds a sur-
face of genus 1, and the quotient is an unknot bounding a
disk.

nW—~3

% o\

Figure 8.14

THEOREM 4. (Riemann-Hurwitz Formula) Let F be a
genus g oriented surface which is equivariant with respect
to a rotation about the z-axis of angle 360/q, and let G
be the quotient of F. If both F and G have one boundary
component, then

genus(F) = g(genus(G)) + (¢ - 1)(A - 1)/2,

where A is the number of points of intersection of F (or
G) with the z-axis.

ProoFr

The idea of the proof is fairly simple. Rather than compute
the genus, compute the Euler characteristic. The Euler
characteristic is defined in terms of a triangulation of the




170 KNOT THEORY

surface, so to relate the two Euler characteristics one starts
with an “equivariant” triangulation.

A triangulation of G can be picked so that the inter-
section points of G with the z-axis are all vertices; for this
triangulation there is a corresponding triangulation of F'.
Every triangle in the triangulation of G determines q tri-
angles in the triangulation of F. The same is true for the
edges. All the vertices of G which are not on the z-axis lift
to g vertices in F'. The A vertices on the z-axis each lift to
a single vertex in the triangulation of F'.

Denoting the number of triangles, edges, and vertices
in F by tp, er and vp, respectively, and using similar
notation for G, one has tr = ¢gtg, er = qeg, and vp =
que — (¢ — 1)A. The argument is completed by computing
the Euler characteristics in terms of the alternating sum
of the number of triangles, edges, and vertices, and then
algebraically translating into a formula for the genus. The
details are left to the exercises. 0

To use these results, one final note about linking num-
bers is needed.

THEOREM 5. If the linking number of a periodic dia-
gram for K is \ then an equivariant Seifert surface for
K intersects the z-axis in A points, where A > )\ and
A =) (mod 2).

PRrROOF
These relations follow easily from an alternative method of
computing JA; using any Seifert surface, the linking number
is given as the absolute value of the number of times the
z-axis cuts the surface from its bottom minus the number
of times it cuts it from the top.

The proof that this count gives )\ is geometric, and
is now sketched. The intersection of the right half of the
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(z,z)-plane with a Seifert surface for K gives a family of
arcs on the half plane. Some of the endpoints of the arcs
are on the 2-axis, and some are on the knot. The endpoints
on the knot correspond to points of intersection of the pos-
itive z-axis in the knot diagram with the knot projection,
and contribute to the count in the original definition of A.
Those on the z-axis correspond to points used in the count
giving the alternative definition of A just presented.

If an arc has both endpoints on the knot, then those
two points will have opposite signs in the count giving
A, and cancel each other. Similarly for arcs with both
endpoints on the z-axis. Arcs running from K to the z-
axis give a pairing of the remaining points, and show that
the two counts are equal. The remaining details consist of
checking that signs work out as desired. 0

EXAMPLE

(Periods of genus 3 knots) The Riemann-Hurwitz for-
mula places strong constraints on the possible periods of
a surface, based on its genus. Consider, for example, a
genus 3 surface, F, with one boundary component. Sup-
pose that F is periodic of period g, and the quotient has
genus gg. Then the Riemann-Hurwitz formula implies
that 3 = qg¢ + (¢ —1)(A—-1)/2

If ¢ > 3, then g¢ is clearly 0, and as a consequence
4 < qg<Tand 2 < A <7. Checking cases shows the only
possibilities are ¢ =7, A =2,and ¢g=4, A =3.

For ¢ = 3 the equation becomes 3 = 3gg + (A —1),
and the only solutions are g¢ =1, A=1,and g =0, A =
4. For ¢ = 2 the equation becomes 3 = 2g¢ + (A —1)/2,
and in this case the only solutions are g = 1, A = 3, and
ga=0,A=T.

Applying Theorem 3, one has that the only possible
periods of a genus 3 knot are 2, 3, 4, and 7.
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As this example illustrates, Theorem 3 along with 4
and 5 yield strong relationships between the genus of a knot
and its possible periods. In general these are captured by
the following corollary.

COROLLARY 6. (Edmonds’ Conditions) If K is a pe-
riodic knot of period q, then there are nonnegative integers
gc and A such that g(K) = qgc+(q—1)(A—-1)/2. Ifa
periodic representative of K has linking number A with the
z-axis, then A > X\ and A = )\ (mod 2), and X is relatively
prime to q.

EXERCISES

4.1. Complete the proof of the Riemann-Hurwitz formula
by computing the Euler characteristic of F in terms of that
of G, and express the result in terms of the genus.

4.2. (a) Find all possible periods of a genus 1 surface with
one boundary component. For each period what
are the possible values of gg and A?

(b) Repeat the calculation for surfaces of genus 2 and
4.

4.3. Find an upper bound on the period of a knot based
on its genus. Show that there are only a finite number of
possibilities for the genus of the quotient knot and A.

4.4. Prove a converse to Theorems 4 and 5. That is, show
that given nonnegative integers gr, gg, ¢, A, and A, sat-
isfying gr = qga+(q—1)(A—1)/2, with A > X\, A =
A (mod 2) and X relatively prime to g, there is a period
q equivariant surface of genus gr with quotient of genus
gc. F should also intersect the z-axis A times, and its
boundary should link the z-axis A times.
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4.5. For what values of g is there no surface of genus g and
period 77 In general, show that for a given period ¢ there
are only a finite number of values for g such that there is
no genus g surface of period q.

4.6. The (3,3,3)-pretzel knot, 935, has Alexander poly-
nomial 72 — 13t +7. Show that Murasugi’s theorem does
not eliminate the possibility of this knot having period 7,
but that Edmonds’ theorem does. Find further examples
of pretzel knots which have periods ruled out by Theorem
3 but not by Theorem 2. Conversely, find examples for
which Murasugi’s criteria place constraints on the possible
periods which cannot be obtained by genus considerations.

4.7. (a) Let K be of crossing index n with n odd. Ex-
ercise 4.4 of Chapter 7 states that if K is not a
(2,n)-torus knot, then the genus of K is at most
(n—3)/2. Using this, apply Edmonds’ condition
to find a bound on the possible periods of n cross-
ing knots with n odd. (Answer: ¢ <n—2.)

(b) If the crossing index of K is an even integer n,
then Exercise 4.4 of Chapter 7 states that the
genus of K is at most (n—2)/2. Find a bound
on the periods of n crossing knots with n even.
(Answer: ¢ <n-—1.)

5 Applications of It is easily seen that there are

the Murasugi and instances where one of Theo-
Edmonds Conditions rems 2 or 3 can be applied to
rule out a possible period for

a knot and the other theorem does not apply. What is
much more interesting is that there are examples of knots
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for which neither result alone places constraints on its pe-
riod, but that when applied together limitations do occur.
The interplay is provided by the quantity A, which ap-
pears in both the Murasugi and Edmonds conditions. In
this section that interplay will be demonstrated.

PERIOD 3 KNOTS

COROLLARY 7. If a genus 1 knot K has period 3, then
its Alexander polynomial satisfies A (t) = +ti(t2+2t+
1) (mod 3).

ProOOF

The only solution of the Edmonds condition, with g(K) =
1 and g = 3, is given by gc = 0 and A = 2. (See Exercise
4.2 of the previous section.) Since the A in Theorem 2 sat-
isfies A < A with equality mod 2, and ) is relatively prime
to 3, it follows that A = 2. The result now follows from
Theorem 2, since the degree of the Alexander polynomial
of a genus 1 knot is at most 2. (One could also argue at
this point that the quotient knot has genus 0 and hence
trivial Alexander polynomial.) O

COROLLARY 8. If a genus 2 knot K has period 3, then
its Alezander polynomial satisfies Ak (t) = £t* (mod 3).

PrROOF

By Exercise 4.2 of the previous section, the only solution to
the Edmonds condition with g(K) = 2 and ¢ = 3 is given
by g¢ = 0 and A = 3. Hence, the quotient knot is trivial,
and has trivial Alexander polynomial. It follows that X in
Murasugi’s conditions is 1 or 3, but 3 is not possible, as A
and the period are relatively prime. The result follows. O
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ExXAMPLES
The (1,—3,5)-pretzel knot (7, in the appendix) is a genus 1
knot with Alexander polynomial —3t2 4 7t — 3. By Corol-
lary 7 it cannot have period 3. This result does not follow
from either Theorem 2 or Corollary 6 individually.
The knot in Figure 8.15
has Alexander polynomial
3t — 743 + Tt2 — Tt + 3. Thus,
its genus is at least 2. Seifert’s
algorithm, which was intro-
duced in Chapter 4, produces u
a genus 2 Seifert surface, so
that the knot has genus ex- L
actly 2. As a consequence of
this, Corollary 8 now implies
that the knot does not have

period 3. Again, this result Figure 8.15
does not follow from either Theorem 2 or Corollary 6.

PERIOD 5 KNOTS

COROLLARY 9. If a nontrivial knot K is of period
5 and g(K) < 3, then the Alexander polynomial of K
satisfies Ax(t) = +t'(t*—t3+t2—t+1) (mod 5), and
genus(K) = 2.

PRroOOF

The only solution to the Edmonds condition with ¢ = 5
and g(K) < 3 is given by g(K) =2, g¢ =0 and A = 2.
Since )\ cannot be 0 it follows that A = 2. The quotient
knot is trivial, as it bounds a genus 0 Seifert surface, and
hence has trivial Alexander polynomial. The result now
follows from the Murasugi conditions. a
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Figure 8.16

EXAMPLE

The knot in Figure 8.16 has
Alexander polynomial 5t%—
15¢3 +21¢2 — 15t +5.  Nei-
ther the Murasugi nor the
Edmonds conditions individ-
ually rule out period 5. How-
ever, Corollary 9 applies, be-
cause Seifert’s algorithm pro-
duces a genus 2 surface. (The
knot is in fact genus 2, but
this observation is not needed

in order to apply Corollary 9.)

EXERCISES

5.1. The knot illustrated in Figure 8.17 has Alexander
polynomial 6¢2 — 13t +6. Show that it does not have pe-

riod 3.

Figure 8.17

5.2. Find all possible Alexander polynomials mod 7 for
period 7 knots K, with g(K) < 5.

1
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5.3. Describe all possible Alexander polynomials mod 3 for
period 3 knots k; with g(k) = 3.

5.4. Show that if a nontrivial period 7 knot has cross-
ing index less than 14, then its Alexander polynomial
is of the form t—t5+¢*—t3+¢2—t+1 mod 7. The
knot shown in Figure 8.18 has Alexander polynomial
7t4 — 21t3 +29¢%2 — 21t +7. This provides an example of
a knot that can easily be shown to not have period 7 using
a combination of methods. (In this case, does either the
Murasugi or Edmonds criteria apply individually to rule
out period 77?)

D

Figure 8.18






CHAPTER 9: HIGH-DIMENSIONAL
KNOT THEORY

The theory of knots in R3 naturally generalizes to a study
of knotting in R"™, with n > 3, and many new and fascinat-
ing aspects of knot theory appear in this high-dimensional
setting. What is perhaps most surprising is that many
problems that are intractable in the classical case have
been solved for high-dimensional knots. There is also a
strong interplay between knot theory in different dimen-
sions, and this interplay leads to an array of new topics at
the border of the classical and high-dimensional settings.

The definitions of polygonal knot and of deformation
of knots generalizes immediately to R*, (or for that matter
R"™); one can simply consider sequences of points in 4-space
instead of R3. Knots formed in this way are called 1-
dimensional knots in 4-space, or, more briefly, 1-knots. It
turns out though that there is really no interesting theory
of such 1-knots; all such knots in 4-space are equivalent.

The appropriate generalization increases the dimen-
sion of the knot as well as the dimension of the ambient
space. The definition of surface given in Chapter 4 easily
generalizes to yield a definition of surfaces in 4-space. A
2-knot is a surface in R* that is homeomorphic to S2, the
standard sphere in 3-space. Figure 9.1 is a schematic il-
lustration of such a knot. Section 1 discusses some of the
details of the definitions, as well as a new subtlety that
arises at the foundation of the subject.

179
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.

Figure 9.1

One of the pleasures of studying high-dimensional
knot theory is the discovery that it is possible to visualize,
and sketch, knots in higher dimensions. Sections 2 and 3
demonstrate this, and should help the reader gain intuition
about R* and the knotting phenomena that occur there.

Section 4 describes a property of classical knots in
R3, called sliceness, that is defined in terms of knotted
2-spheres in R%. It is here that the interplay between di-
mensions 3 and 4 comes out. The notion of slice knot can
be used to define an equivalence relation called concor-
dance on the set of classical knots, and it turns out that
there is a natural (abelian) group structure on the set of
concordance classes of knots. Very little is known about
this group, and what is known is summarized in Section 5.

1 Defining Knots The definition of knot given

in Higher Dimensions in Chapter 2 ruled out the
possibility of infinite knot-

ting, as illustrated in Figure 2.2. In higher dimensions
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the definitions must also rule out such pathologies. As in
the classical case, this can be done using either polygo-
nal knots or smooth knots. Unlike the classical case, the
two theories that arise can be distinct. For instance, it is
true that every smooth knot can be closely approximated
by a polygonal knot, and that if two different approxima-
tions are chosen, the two polygonal knots are equivalent.
However, when two inequivalent smooth knots are approx-
imated by polygonal knots, it is possible that the resulting
knots may be polygonally equivalent.

The study of the distinctions between the theories lies
at the foundations of topology and is beyond the scope of
this chapter. Only the smooth theory, probably the easiest
to describe, is summarized. The discussion begins with the
definition of the k-sphere.

DEFINITION. The k-sphere, S*, is the set of unit vec-
tors in R*+1; that is,

Sk = {(x1,...,Zh41) € R¥+1 |-’E§+“'+$Z+1 =1}

Two important examples are S, which is the unit
circle in the plane, and S2, which is the 2-sphere illustrated
in Figure 9.1. (The convention of calling these spheres k-
spheres rather than (k4 1)-spheres is based on the fact
that intrinsically S* is k-dimensional, it is only a subset of
a (k+ 1)-dimensional space.)

DEFINITION. A smooth knotted k-sphere in R*, K, is
a subset of R™ of the form F(S*), where F is a one-to-
one differentiable function from S* to R™ with everywhere
nonsingular derivative.

(Recall that the derivative of such a function assigns
to each point p in S* a linear map, Dp(F), from the set
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of tangent vectors to S* at p to R®. The linear map is

nonsingular if its image is k-dimensional. Also, note that

this definition corresponds to the definition of smooth knot

given in Chapter 1 in the case of k = 1 and n = 3. The

nonsingularity condition eliminates the type of knotting

that was illustrated in the second figure of Chapter 2.)
The definition of equivalence is harder. Suppose that

K and K are smooth k-knots in R™. They are considered

smoothly equivalent if there is a family of differentiable

functions, F;, 0 <t < 1, from S* to R™ such that:

(1) for all ¢, F; is one-to-one with everywhere nonsingular
derivative,

(2) Fo(Sk) = Ko and Fl(S") = Kl, and

(3) the function G from S* x [0,1] to R™ defined by
G(p,t) = Fy(p) is differentiable.

Roughly stated, two knots are equivalent if one can be

smoothly deformed into the other through a sequence of

smooth knots.

EXERCISES

1.1. Describe the 0-sphere, S°. Explain why all 0-knots in

R? are equivalent.

1.2. (a) Give a definition of a high-dimensional link. Your
definition should include the possibility of having
components of different dimension.

(b) Define equivalence of high-dimensional links.

2 Three Dimensions In Edwin A. Abbott’s novel
from a 2-dimensional Flatland the narrator tries to
Perspective describe a 2-sphere to the in-

habitants of a plane. As Ab-

bot intended, that description leads to an understanding
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of how 4-dimensional phenomena can be studied from a
3-dimensional perspective.

When a plane parallel to the z—y plane is lowered
through space, its intersections with a 2-sphere give a series
of 2-dimensional cross-sections of the sphere. The first non-
trivial cross-section consists of a single point. The point
then opens up into a circle which grows until its radius is
that of the sphere, and then it shrinks down to a point
and disappears. This sequence of cross-sections forms the
frames of a Flatlandian movie of a sphere in 3-space.

S
\_/

. O O .

Figure 9.2

Flatlandian movies could be made that would illus-
trate other surfaces in 3-space. For instance, Figure 9.3
shows some frames from a description of a surface homeo-
morphic to a sphere and Figure 9.4 illustrates a Flatlandian
film of a torus.

Knots could also be shown to Flatlanders as a se-
ries of 2-dimensional cross-sections. For instance, the first
nontrivial cross-section of the trefoil might consist of two
points in the plane. Each of those points immediately split
into a pair of points. The center two points then rotate
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about one another. Finally, pairs of points rejoin and then
disappear. This is in Figure 9.5.

Figure 9.5

The exercises ask you to describe other knots and links
to Flatlanders.

EXERCISES

2.1. Draw a series of frames

illustrating cross-sections of

the sphere illustrated in Fig-

ure 9.6.

2.2. Draw a series of figures

illustrating the cross-sections

of a pair of nested spheres. Figure 9.6
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2.3. Find an algorithm for deciding if a surface described
via a series of cross sections is connected.

2.4. Describe the cross sec-
tions of the Figure-8 knot
and the Borromean rings.

2.5. The (p,q)-torus knot can
be placed so that its cross-
sections are extremely sim-
ple to describe. Find that
description.

2.6. Draw 2-dimensional cross-
sections of the knotted torus
illustrated in Figure 9.7. Figure 9.7

3 Three-dimensional Just as 3-space can be swept
Cross-sections of out by a plane, 4-space can

a 4-dimensional Knot also be swept out by 3-dimen-
sional hyperplanes. Often

the fourth coordinate is viewed as the time, or ¢, coor-
dinate and the hyperplanes are viewed as parameterized
by time. To be precise, let H, = {(z,y,2,t) € R* |t =7}.
A 2-knot in 4 space, K, can be described via a sequence
of 3-dimensional cross-sections of the form H;N K; many
of these intersections might be classical knots or links in
H;, which is naturally identified with R3. The simplest
such sequence begins with a point in R® which immedi-
ately opens up into an unknotted circle. The circle grows
for a while and then shrinks back into a point and disap-
pears. This is similar to the sequence illustrated in Figure
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9.2. Corresponding to Figure 9.3 there is another picture of
a 2-sphere in 4-space which begins with 2 points. Both of
the 2-knots described by these sequences are in fact triv-
ial, where a trivial 2-knot in R* is a knot which can be
deformed into the standard S? in Hy = R3.

Of much greater interest is the sequence of cross-
sections drawn in Figure 9.8. Here only the first half of
the series is illustrated.
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Figure 9.8

The second half appears as the first in reverse order. The
2-knot that this describes is called the spun trefoil, and
was among the first examples of nontrivial 2-knots. It was
discovered by Artin.

Proving that the spun trefoil is nontrivial requires al-
gebraic topology, and in particular a careful study of its
fundamental group. There actually is a method of showing
that it is knotted which is based on colorings, but a proof of
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the validity of this approach depends on a careful study of
the fundamental group in any case. Unfortunately, there is
no simple generalization of Reidemeister moves in dimen-
sion 4. A description of colorings will be given later in the
section.

Other examples of 2-knots are easily constructed in
a similar manner. The exercises ask you to form a few.
An interesting family of examples, described by Zeeman,
can be formed by slightly modifying the sequence of cross-
sections just described. The first half of the sequence is
the same as for the spun trefoil. Now, before reversing
the sequence to construct the “bottom half” of the knot,
one of the two trefoils can first be twisted about its axis
as illustrated in Figure 9.9. If it is twisted k times, the
resulting knot is called the k-twist spin of the trefoil. One
of Zeeman’s remarkable discoveries was that the 1-twist
spin of the trefoil (or any other knot for that matter) is
actually unknotted. An immediate consequence of this is
that the unknotted 2-sphere in 4-space can be deformed
so that some of its cross-sections are nontrivial knots in
3-space! (Stallings first constructed an example of this
phenomena prior to Zeeman’s work.)

DO \Q@ \QCJ
NG \/@

Figure 9.9
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One useful fact in studying knotted 2-spheres is that any 2-
knot in R* can be slightly deformed so that all but a finite
number of cross-sections are either classical links or empty.
The finite set of exceptions correspond to transitions where
components appear or disappear, or else components band
together or split apart. Operations of this second type are
called band moves. These two types of transitions are illus-
trated in Figure 9.10. The descriptions of 2-knots already
presented had this property, and for the rest of the chapter
all knots will be assumed to have such cross-sections.

° (o) O

X X X

Figure 9.10

COLORING 2-KNOTS

A proof that if a classical knot or link diagram is colorable
then every diagram for that link is colorable was given
in Chapter 3, and was based on the Reidemeister moves.
The proof actually showed more: once a coloring is picked
for a diagram, then there is a canonical choice of coloring
for all other diagrams. To see this, observe that when a
Reidemeister move is performed on a colored diagram there
is a natural choice of coloring for the new diagram.
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A 2-knot is called colorable if every cross-section can
be colored so that nearby cross-sections are colored in a
consistent manner, and at least two colors appear. When
new components appear there is no restriction on how they
are colored, but when components join together, the col-
orings have to be the same at the point that they meet.
A nontrivial coloring of the spun trefoil is illustrated in
Figure 9.11.

LB
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Figure 9.11

O
O

It is left to the reader to check that if the trivial compo-
nents in the first frame are colored red and blue, then the
coloring of the second frame must be as illustrated. More
examples are presented in the exercises.

EXERCISES

3.1. Illustrate the cross-sections of a knotted 2-sphere for
which the middle cross-section is as illustrated in Figure
9.12a. The dotted line provides a hint.

3.2. Repeat Exercise 1 for the knot illustrated in Figure
9.12b. Why is the surface you construct a 2-sphere?
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LY@

(a) (b)
Figure 9.12

3.3. Repeat Exercise 1 for the knots illustrated in Figure
9.13.

Figure 9.13

3.4. Find a nontrivial coloring or show that one does not
exist for each of the knots constructed in the previous ex-
ercises.

3.5. For any knot K, the knot K#K"™™, as illustrated in
Figure 9.12, occurs as the middle cross-section of a knotted
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2-sphere in R, called the spin of K. Describe the general
construction of the 2-knot. Show that if K is colorable,
then so is the spin of K.

3.6. The sequence of drawings in Figure 9.14 illustrate a
surface in 4-space. The surface is not a sphere. What is
it?

o

.
G

I A
.

Figure 9.14

o

3.7. The sequence of diagrams in Figure 9.15 (taken from
[Fox]) illustrate the cross-sections of a knotted surface in 4-
space for which one cross-section is a nontrivial link. Verify
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that the surface is a 2-sphere. (Epstein showed that this
2-knot is in fact trivial.)

(1

Y
G-~

Figure 9.15

3.8. The theory of mod(p) labelings applies to 2-knots also.
Use this to show that the knots constructed in Exercise 1
are nontrivial.

4 Slice Knots The last section presented

several examples of classical

knots in R® that arise as cross-sections (or slices) of 2-
knots in R%; these were illustrated in Figures 9.8, 9.12 and
9.13. Such knots are called slice knots. Determining if a
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knot is slice is a fascinating problem at the border between
classical knot theory and the high-dimensional theory.
There is a useful alternative definition of slice knot.
Note that the z—y plane in 3-space is the boundary of upper
half space, R3 = {(z,y,2) | 2 > 0}. Similarly, 3-space, R?,
can be identified with the z—y-2z hyperplane (Hp) in upper
4-space, RY = {(z,y,2,t) | t > 0}. A classical knot in R?
is slice if it is the boundary of a smooth disk in R%, and
the disk it bounds is called its slice disk. A slice disk is
illustrated schematically in Figure 9.16.
The equivalence of the two

definitions of slice knot is

“ fairly simple to describe. If

“ a knot is the cross-section of

a knotted 2-sphere, K, then

the portion of K lying above

the cross-section forms a slice

disk. On the other hand, if a

classical knot bounds a slice disk, then the union of the

disk and the mirror image of that disk in lower 4-space,
R*, forms a knotted 2-sphere.

It was seen in the previous section, Exercise 3.5, that

the connected sum of a knot and its mirror image is always

slice. (Actually, some care

| l with orientation is needed

here; the correct statement is

Figure 9.16

I that K#K™ is slice.) After

| l describing a few more exam-
ples, methods of proving that

a knot cannot be sliced will
be described. A knot is called
a ribbon knot if it bounds a disk with self intersections only
of the type illustrated in Figure 9.17. Such a disk is called a

Figure 9.17
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ribbon disk.

Two examples of ribbon knots were drawn in Figure
9.13, the first is actually the square knot, which was the
first example of a slice knot in the previous section. The
diagrams make it clear how the name ribbon arises.

0 THEOREM 1. Every ribbon knot is slice.

ProoF

A series of cross-sections of a slice disk is easy to construct.
Near the ribbon intersections of the ribbon disk the knot
can be pinched to divide it up into several components.
That collection of components forms an unlink and each
one can be shrunk to a point. This is illustrated in Figure
9.18 below. Usually this algorithm is excessive in that
a slice disk could be found without introducing so many
components. O

Qv Q@7

Figure 9.18
0 CONJECTURE. Every slice knot is ribbon.

This conjecture has been known since the early 1960’s
and remains one of the most challenging problems in the
field.
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CONDITIONS ON SLICE KNOTS

If a knot is slice there are strong restrictions on its possible
Seifert matrices. These in turn place restrictions on the
Alexander polynomial and signatures of slice knots. The
proof of the main theorem is beyond what can be presented
here, but the corollaries follow fairly easily.

THEOREM 2. Ifaknot K is slice and V is any Seifert
matriz arising from a Seifert surface of genus g, then there
is an invertible (determinant 1) integer matriz M such that

MV M is of the form
0 B
C D

where B, C, and D are g X g matrices with B—C = %I,
where I is the g X g identity matriz.

COROLLARY 3. The Alexander polynomial of a slice
knot can be factored as £t*f(t)f(t™1) for some integer
polynomial f and integer k.

Proor
The Alexander polynomial is given by

det(V —tV*) = det(M(V — V') M?)
= det(MVM! —tMV M?).

This last matrix is of the form

0 B-—tCt
C-tBt D-tDt

and f(t) can be taken to be det(B —tC?). O
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EXAMPLE
The trefoil knot is not slice, as its Alexander polynomial
is irreducible.

This result is quite useful, but it fails for a knot as
simple as the granny, the connected sum of the trefoil with
itself.

COROLLARY 4. If a knot is slice then its signature
(and all its w-signatures) are 0.

Proor
Only the real signature will be discussed; a proof for the
complex signatures is similar.

The matrix V +V? which must be diagonalized can

be put in the form
0 S
St R

and since V 4+ V' is invertible over the reals, the matrix S
is invertible. Hence, simultaneous row and column opera-
tions can be used to put this matrix into the form

0 I,
I, R}’
Further row and column operations can be used to elimi-

nate the bottom right-hand block. Finally, it is a straight-
forward calculation that the signature of the matrix

0 I,
I, 0

is 0. ]
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EXAMPLE
As the signature of the trefoil is 2, the granny has signature
4, and is not slice.

If a knot has a Seifert form which is similar to a matrix

of the form
0 B
C D

as above, then it is called algebraically slice. Theorem 2
thus states that every slice knot is algebraically slice. In
higher dimensions there are corresponding notions of slice
knots and algebraically slice, and results of Kervaire and
Levine imply that in higher dimensions a converse result
holds; a high-dimensional knot is slice if and only if it is
algebraically slice. The surgery theoretic methods used in
their proofs fail for classical knots, and Casson and Gordon
proved that there are algebraically slice knots in R3 that
are not slice. This is described further in Exercise 4.5.

EXERCISES

4.1. Prove that if a knot

can be reduced to an unlink

of n+1 components by per-

forming n band moves, then

it is a ribbon knot. (It R 7
should be clear that it is QD
slice.) Hence, the solution of

Exercise 2.5 shows that knots

of the form K#K"™ are ac-
tually ribbon.

4.2. Show that the knot in Figure 9.19
Figure 9.19 is a ribbon knot. Also, argue that if the knot

AT
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has n twists instead of 4 as illustrated, then for n odd it is
genus 1 and hence is a prime slice knot. Finally show that
it is the cross-section of a colorable 2-knot for all n.

4.3. Which knots with 7 or fewer crossings have polynomi-
als satisfying the polynomial condition on slice knots given
by Corollary 3.

4.4. The n-twisted double of the unknot, illustrated in
Figure 9.20, with n = 2 has Seifert matrix V given by

-1 1
(o )
For what values of n does the polynomial satisfy the con-
ditions of Corollary 37 Show that for these values of n the
knot is actually algebraically
slice. (Hint: If a quadratic

polynomial factors as desired,
it has rational roots.)

4.5. The doubled knots of

8 the previous exercise are slice

2 only when n = 0 or 2, as

proved by Casson and Gor-

don. Show that for n = 2 the

knot is ribbon. (Hint: con-

sider the examples in Exer-

Figure 9.20 cise 4.2.)

4.6. Not every unknotting number 1 knot is slice, as was
seen in the previous exercises. However, every unknotting
number 1 knot is the boundary of a genus 1 surface in R‘_’,_
Show this by finding a pair of band moves that changes an
unknotting number 1 knot into a two component link and
then into the unknot. The corresponding surface, which
is completed by letting the unknot shrink to a point, is
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of genus 1. Why? (The bands can all be drawn near the
crossing that needs to be changed.)

4.7. A ribbon knot is always the slice of a 2-knot, as de-
scribed in the proof of Theorem 1. Show that if that 2-knot
is colorable, then at the middle cross-section parallel arcs
of the ribbon in the diagram are colored the same color.

4.8. (a) A link of two components in R* is called splittable
if it can be deformed so that the components lie
on opposite sides of the (y, z,t)-hyperplane. Show
that the number of colorings of a split link, includ-
ing trivial colorings, is the product of the number
of colorings for each component.

(b) Figure 9.21a illustrates a link of two components
which is the cross-section of a link of two 2-knots
in R*. Show that it is not splittable by counting
colorings.

»
iy

\S7a \7

Figure 9.21



HiGH-DIMENSIONAL KNOT THEORY 201

(c) Repeat part b for Figure 9.21b. This example is
more interesting, as each component taken indi-
vidually is trivial. (Can you see why?)

5 The Knot Using the notion of sliceness,

Concordance Group an equivalence relation called

concordance can be placed on

the set of classical knots. The operation of connected sum

induces a group structure on the set of concordance classes

of knots, and understanding the structure of this group is
one of the outstanding problems in knot theory.

0 DEFINITION. Knots K and J are called concordant if
KH#J™ is slice.

0 THEOREM 5. Concordance forms an equivalence rela-
tion on the set of knots.

PROOF

That the relation is reflexive follows from the earlier obser-
vation that K# K™ is always slice. That it is symmetric
is automatically satisfied. Transitivity is quickly reduced
to showing that if knots K and K+#J are slice, then so
is J; the proof of this statement calls for a geometric con-
struction which, although not too difficult, is not presented
here. O

0 LEMMA 6. If K, is concordant to Ko and J; is concor-
dant to Jo, then K 1#J1 is concordant to Ka#J;.
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Proor

The proof calls for a geometric fact which has not been
proved in the text; if knots K and J are slice, then so is
K#J. The reader should be able to sketch the argument.
The rest of the proof is formal. One needs to show that

(Ka# ) #(Ka#J2)™

is slice. However, this knot is the same as

(K1 #EK3™)#(N#T5™),

which is the connected sum of two slice knots. (]

This lemma implies that the connected sum operation
induces a well-defined operation on the set of concordance
classes of knots.

THEOREM 7. With respect to the operation induced
by connected sum, the set of concordance classes of knots
forms an abelian group, denoted C3.

Proor

Associativity follows from the fact that connected sum of
knots is an associative operation. Similarly for commuta-
tivity. The identity element is given by the concordance
class of the unknot, U, since K#U = K. (The concor-
dance class of the unknot consists of all slice knots.) The
inverse of the concordance class of K is given by the con-
cordance class of K™™, since K# K™ is slice. 0

THE STRUCTURE OF C}
As mentioned earlier, understanding the structure of
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this group is one of the outstanding problems of low-
dimensional topology. The few facts that are known about
the group can be easily summarized here.

Fact 1: The concordance group is countable.

Every knot can be deformed so that all its vertices
have rational coordinates. It follows that there are only
a countable number of knot types, so certainly there are
only a countable number of concordance classes.

Fact 2: The function that sends K to o(K)/2 is a
homomorphism from the concordance group onto Z, and
hence the concordance group is infinite. (Here o(K) is the
signature function defined in Chapter 6.)

That o(K)/2 is a homomorphism follows from the ob-
servation that signature adds under connected sum (Exer-
cise 3.6 of Chapter 6) and Corollary 4. (It is easily seen
that o(K) is always even; see Exercise 3.4 of Chapter 6.)
The trefoil has signature 2, and surjectivity follows.

Fact 3: There are elements of order 2 in the concor-
dance group.

The figure-8 knot, K, provides one such example. As
its Alexander polynomial is irreducible, it is not slice. How-
ever, it is negative amphicheiral so that K = K™ and
hence K#XK is slice.

Fact 4: C? maps homomorphically onto Z*°.

An infinite collection of homomorphisms to Z can be
defined using w-signatures, and these can be pieced to-
gether to define the desired homomorphism. Levine found
examples demonstrating surjectivity.

Beyond these few observations little more is known;
for instance, whether or not there are elements of finite
order other than order 2 is unknown. Recent advances in
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low-dimensional topology only indicate that this problem
is even more complicated than anticipated.

It is possible to define concordance groups of higher-
dimensional knots, and surprisingly the structure of these
groups is well understood. Letting C?*? denote the con-
cordance group of n-knots in R"*2, it is known that C?+2
is trivial for n even, and is isomorphic to

(Z/2Z2)* & (Z/AZ2)° & (Z2)™
for n odd.

EXERCISES

5.1. Use the result that whenever the knots K and K#J
are slice then J is also slice to prove that concordance is
transitive.

5.2. Use Alexander polynomials to prove that the trefoil
and the (2,5)-torus knots are not concordant.

5.3. The (2,p)-torus knot has Alexander polynomial
(t? +1)/(t + 1), which is irreducible for p prime. Use this
to prove that for p prime the (2,p)-torus knot is not con-
cordant to a knot of genus less than (p—1)/2.

5.4. (Casson) Although, by Exercise 4.6, unknotting num-
ber 1 knots always bound genus 1 surfaces in R4+, there
are unknotting number 1 knots that are not concordant to
genus 1 knots. Find an example of this.




CHAPTER 10:
NEW COMBINATORIAL TECHNIQUES

O T s Boer ST

New combinatorial knot invariants have been discovered
which are simple in definition and yet extremely powerful.
Unlike those described earlier, there is no known connec-
tion to knot theory in higher dimensions. It now seems
likely that they relate to properties that are unique to di-
mension 3. The new techniques have their roots in an
observation made by Alexander in his original paper on
the Alexander polynomial, an observation that went unex-
ploited for forty years.

Given an oriented link diagram, focus on a particular
crossing. If that crossing is changed from right to left or
vice versa, a new link diagram results. The crossing could
also be smoothed to obtain yet another link diagram. The
smoothing process removes small sections of the arcs that
pass over and under, and replaces them with a new pair
of arcs that do not cross. There is only one way of do-
ing this while maintaining the orientation of the original
diagram. Hence, for a given diagram and crossing, there
are a total of three associated diagrams, corresponding to
links denoted Ly,L_, and L,. This is illustrated in Figure
10.1. Of course, the links that result depend on the choice
of crossing.

Alexander proved that if his algorithm for computing
the Alexander polynomial is applied appropriately to all
three diagrams, the resulting polynomials are related by
the equation Ap, (t) — Ap_(t) = (1 —t)AL,(t). This result

0

p=

205
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makes it appear that the polynomials of L_ and L, de-
termine that of L. Unfortunately, this does not follow;
the Alexander polynomial is only defined up to multiples
of +t*, and different choices of representative polynomi-
als lead to different sums. However, as will soon be seen,
there is a way to normalize the Alexander polynomial that
makes this problem disappear.

@k

Figure 10.1

(A definition of the Alexander polynomial of oriented
links was not presented in the text. The combinatorial ap-
proach of Chapter 3 extends to links, as does the definition
in terms of Seifert matrices, Ar(t) = det(V —tV?), where
V is the Seifert matrix arising from an oriented Seifert
surface for L.)

EXERCISES

0.1. It seems that by picking the appropriate crossing that
is changed or smoothed in a given link diagram, both of
the resulting links are somehow simpler. This problem asks
you to formalize this.

Recall first that any link diagram can be changed into a
diagram for the unlink by changing some of the crossings.
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Define the complezity of a link diagram, D, to be the or-
dered pair of nonnegative integers x(D) = (¢*(D),u*(D)),
where ¢*(D) is the number of crossings in D and u*(D)
is the minimum number of crossings in the link diagram
that can be changed to create an unlink. Order the set of
complexities by the rule (c},u}) < (¢3,u3) if: (1) ¢f < ¢35
or (2) ¢} = ¢ and u} < uj3. (This ordering is called lexi-
cographical, and is sometimes referred to as the dictionary
order.)

(a) For a given diagram, D, if u*(D) # 0, show that
for some choice of crossing, changing the crossing
and smoothing the crossing both result in dia-
grams of smaller complexity.

(b) Show that there is no infinite sequence of decreas-
ing complexities, y1 > x2 > x3> ....

1 The Conway The Alexander polynomial of
Polynomial of a Knot a knot, K, can be normalized
so that it is symmetric, in the
sense that Ak (t) = Ax(t™1), and A(1) = 1. For example,
the trefoil knot has polynomial ¢ — 1 +¢~!. This symmetry
is discussed in general in Exercise 1.2. Once normalized in
this way, it can be written as a polynomial of the form
Vk(z), where z = t'/2—¢~1/2 and only positive powers
of z appear in Vg (z). This new polynomial is called the
Conway polynomial, or potential function, of K, Vk(z).
A simple calculation demonstrates this change of vari-
able in the case of the trefoil polynomial; ¢t —1+¢"! =
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22 +1. As a more complicated illustration, check that

o — T2 413t —15+13t7 =7t~ 2 + 278
=228 +52* +322+1,

again with z = t1/2 —t~1/2, The exercises ask you to com-
pute more examples and to prove the general result show-
ing that every symmetric polynomial can be written in
terms of z.

(The Alexander polynomial for links display the same
symmetry, with one slight subtlety; one needs to consider
the Alexander polynomial as a polynomial in the variable
t'/2, and it is well defined only up to multiples of +(¢1/2)*.
This technical detail is discussed in Exercise 1.2. In any
case, with a little care the Conway polynomial can be de-
fined for links as well as for knots.)

Conway proved that the potential functions of links
L,i,L_, and L, which are related as above, satisfy the
recursion relation

VL.'_ (Z) - VL__ (z) = —ZVL‘ (z)
This relation, along with the fact that for the unknot U,

Vu(z) = 1, leads to an efficient means for computing
Vi(z).

O OO
QO

Figure 10.2
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EXAMPLES

In Figure 10.2, Ly and L_ are unknots, and L, is an unlink
of two components. It follows that for the unlink of two
components Uz, Vy,(2) = 0. A similar argument shows
that for any splittable link the Conway polynomial is triv-
ial. (A link is called splittable if it can be deformed so that
one component is on one side of the (y,z)-plane and the
other components lie on the other side.)

In Figure 10.3, L, is the (2,2)-torus link, T2, L_ is the
unlink, and L; is the unknot. It follows from the recursion
relation that Vr,(z) = —z. If the orientation of one of the
components is changed, the resulting Conway polynomial
is Vi = z.

¢ G

Figure 10.8

One can proceed to build up collections of examples
in this way. Figure 10.4 relates the trefoil to the unknot
and the (2,2)-torus link discussed above, and the recursion
relation then shows that the Conway polynomial of the
trefoil is 22 + 1. The exercises ask you to consider a few
more examples, and, in particular, to show that the (2,5)-
torus knot has Conway polynomial 2% 4+ 32% + 1.

The following theorem offers computational tools that
are useful in more complicated examples.
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GRS )

Figure 10.4

0 THEOREM 1.
(a) For knots Ky and Ka, Vi, 4k,(2) = Vk,(2)Vk,(2).
(b) For any knot K, Vi (2) = Vgm(2) = Vir(2).

PRrOOF
All three statements follow from similar results concerning
the Alexander polynomial of knots. o

As a final example, consider the knot K illustrated
in Figure 10.5. In the illustration it is shown how a se-
quence of crossing changes and smoothings can reduce K
to simple knots and links, each of which has easily com-
puted Conway polynomial. Applying the recursion formula
yields Vi (z) = 2% +52% +42% + 1. In the figure, simplifi-
cations of the diagrams have been carried out that should
be checked by the reader.

RECURSIVE DEFINITION OF THE CONWAY POLYNOMIAL
The recursive formula for the Conway polynomial, along
with the condition that Vy(2) = 1, offers an effective
means for computing its value. These two conditions also
offer a new means of defining the invariant.
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As has been seen with a few examples, given an ori-
ented link L, a series of choices, both of diagrams and
crossings, leads to a calculation of the value of V(z). One
proof that the outcome is independent of the choices is that
it is equivalent to the Alexander polynomial, suitably nor-
malized, which is already known to be well defined. As an
alternative, there is a direct proof that none of the choices
made affect the outcome. As can be imagined, the proof is
a delicate combinatorial argument which includes a careful
analysis of the Reidemeister moves.

At this point it might seem that such a direct approach
is of little value, given that several alternative arguments
exist. The importance is both philosophical and practi-
cal; it reveals that such a recursive formula offers a means
of actually defining invariants, and indicates a means for
proving that they are well defined.

EXERCISES

1.1. Express several Alexander polynomials in terms of
2= 124172,

1.2. The symmetry of the Alexander polynomial follows
most easily from the definition in terms of Seifert matrices.
Recall that from the fact that the Seifert matrix is 2g x 2g,
where g is the genus of the Seifert surface, one concludes
that the polynomial satisfies t29 A(t~') = A(t). From this,
show that the Alexander polynomial can be normalized so
that A(t!) = A(t). For links the Seifert matrix might be
odd dimensional. Show that in this case, by multiplying
by an odd power of t!/2 one arrives at a function, A(t),
satisfying A(t~!) = —A(t), where A(%) is now a polynomial
in t1/2,

1.3. Find the Conway polynomials of the oriented links in
Figure 10.6.
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9100

Figure 10.6

1.4. Show that the Conway polynomial of the (2,5)-torus
knot is 24+ 322 + 1.

1.5. Compute the Conway polynomial for several knots in
the appendix. Check each result by comparing it to the
Alexander polynomial.

1.6. Give a “recursive” proof that the Conway polynomial
of the connected sum of links, Li#L2, as illustrated in
Figure 10.7, is the product of their Conway polynomials.

@@9

Figure 10.7

(Hint: A repeated sequence of crossing changes and defor-
mations applied to Ly express V[, (2) as a sum of terms of
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the form 2%V j,(z), where J; is either an unknot or unlink.
The same sequence can be applied to Li#Ls to express its
Conway polynomial as the sum of terms 2%V j, 4k, (2).)

1.7. In Exercise 5.5 of Chapter 3, you were asked to prove
that a particular 11-crossing knot had Alexander polyno-
mial 1. At that time, the calculation called for the com-
putation of the determinant of a 10 x 10 matrix with poly-
nomial entries, a daunting task without the assistance of a
computer. Compute its Conway polynomial.

1.8. Suppose that a circle in the plane intersects a knot
diagram in exactly four points, as illustrated for a partic-
ular example in Figure 10.8. Rotating that portion of the
diagram in the circle by 180 degrees creates a new link
diagram. The new link is called a mutant of the first.

o (&

Figure 10.8

Show that mutant knots have the same Conway polyno-
mial. (Hint: Show that a sequence of crossing changes and
smoothings can be carried out within the circle so that
the resulting links and knots have the property that each
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is unchanged by mutation.) Use this to prove that the
Alexander polynomial of the (p;,pa,...,pn)-pretzel knot is
independent of the order of the p;.

2 New Polynomial In 1985, Jones described a
Invariants new polynomial invariant of
knots and links which was
able to distinguish knots with the same Alexander poly-
nomial. Jones’s work used braid descriptions of knots. It
was soon seen, however, that this Jones polynomial could
be computed, and defined, via a recursion formula similar
to that for the Conway polynomial. Almost immediately, it
was recognized that the two recursion formulas are special
cases of a recursion formula defining a 2-variable polyno-
mial of knots and links. This new polynomial, named the
HOMFLY polynomial after the initials of some of its dis-
coverers (Hoste, Ocneanu, Millett, Freyd, Lickorish, and
Yetter) contains information that is missed by both the

Jones and Conway polynomials.
The recursion relation for the HOMFLY polynomial,

Py (¢,m), is given by

¢Py, (6,m) + €7 Py_(£,m) = —mPy, (L,m).

As with the Conway polynomial, this formula, along
with the condition that for the unknot U, Py(¢,m) = 1,
yields a well-defined polynomial link invariant.

EXAMPLES
The calculation for the unlink based on Figure 10.2 now
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shows that the unlink of two components has polynomial
—m~(£+£71). Letting

u= _m—l(e_*_e—l),

one can quickly show that the unlink of n components has
polynomial x™~1. In general, the calculation of P proceeds
in the exact same way as for the Conway polynomial. A
few more examples are left as exercises for the reader:

Ps, (6,m) = (—20% — £*) + ®m?,
Py (6ym) = (—€2-1—-£2)+m?,
Ps,(6,m) = (2+ 20 +£%) + (-1 - 362 — £Yym? + m*.

As was demonstrated in Exercise 1.6, the orientation
of the components of a link affect the value of the polyno-
mial. This adds to the care required to do the calculations
correctly.

EXERCISES

2.1. Carry out the calculation of the HOMFLY polynomial
for the trefoil knot and its mirror image. Exercise 2.6 dis-
cusses the relationship between the polynomial of a knot
and its mirror image.

2.2. Compute the HOMFLY polynomial of the knots 4,
and 62.

2.3. Show that V(z) = P(i,iz), where i? = —1.

2.4. Use the sequence of crossing changes to compute the

HOMFLY polynomial of the knot in Figure 10.5 above (see
_ p- 215).

2.5. Show that the 11-crossing knot discussed in Exercise
1.5 has nontrivial HOMFLY polynomial.
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2.6. Show that the HOMFLY polynomial of a knot and its
mirror image are related by replacing £ by £71.

3 Kauffman’s The theory of polynomial in-

Bracket Polynomial variants of knots continues to

develop. Among the most

significant advances is a new approach introduced by

Kauffman. The Kauffman bracket polynomial is easy to

define, and the proof that it is a knot invariant follows
readily from the Reidemeister moves.

In an unoriented link diagram, D, crossings can be
rotated to appear as in Figure 10.9a. Each crossing can
then be smoothed in one of two ways, one of which is
called a smoothing of type A and the other of type B, as

SOCK

(a) (b)
Figure 10.9

indicated in Figure 10.9b. Kauffman defines a state, S,
to be a choice of smoothings for each of the crossings in
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the diagram. For each state (if there are n crossings there
are 2" states), set (D|S) = t*~®, where a is the number
of smoothings of type A and b is the number of type B
smoothings. Next define

(D) = (D|S)(—t72—2)IsI-1,

where the sum is taken over all states, and |S| is the num-

ber of circles that result after all the smoothings of the
given state are performed to the diagram.

As an example, consider the

diagram D for the trefoil in

Figure 10.10. There is a to-

tal of eight states. One of the

states has no type B changes.

Three states have exactly 1

type B change. Another 3

states have exactly 2 type B

changes. The last state has 3

type B changes. The result-

ing diagrams have |S| equal-

Figure 10.10 ing 2, 1, 2, and 3 respectively.
The resulting polynomial is shown below:

(D) =t3(—t"2 —t%) 4+ 3¢
+ 37N (—t72 —2) 4t 3(—t72 —£2)?
=t S+t 34477,
In general, the polynomial (D) can be shown to be in-
variant under Reidemeister moves 2 and 3, but it definitely
changes when the first Reidemeister moves is performed.

(As an easy but valuable exercise, what happens when a
Reidemeister move 1 is performed to a trivial diagram for
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the unknot? There are two cases to comsider, one where
the added crossing is right-handed and the other when it
is left-handed.)

To arrive at a polynomial that is invariant under all
three Reidemeister moves, a correction term can be in-
cluded as follows. Orient each component of the original
diagram D, and call the resulting link K. Let w denote the
number of right-handed crossings minus the number of left-
handed crossings in the resulting oriented diagram. The
Kauffman polynomial, F[K], is defined to be (—¢)~3%(D).
(The reader can easily verify that Reidemeister move 1
changes (D) by (—t)*3.) In the case of the trefoil, illus-
trated in Figure 10.10, w = 3, and the resulting polynomial
ist 44712 —¢716,

As in the example of the trefoil, the exponents of
the resulting polynomial are always divisible by 4. Hence,
F[K](t~1/4) is a polynomial (in ¢ and ¢~!) and Kauffman
proved that F[K](t~'/4) is in fact the Jones polynomial.
This new approach to the Jones polynomial is strikingly
simple. More important, it can be used to define other in-
variants which have proved especially useful, and also leads
to new insights into the Jones polynomial.

The Kauffman polynomial has proved especially use-
ful in the study of combinatorial properties of knots.
For instance, Kauffman, and independently Murasugi and
Thistlethwaite, proved that if a knot has an alternating di-
agram, then all of its minimal crossing diagrams are alter-
nating. A related result is the additivity of crossing num-
ber for alternating knots. As with the Alexander polyno-
mial, the new knot polynomials reflect symmetries of knots
and links, and these connections yield a variety of corol-
laries. Several excellent recent surveys concerning these
new methods and results in knot theory are listed in the
references.
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Many questions remain open. There are knots which
have trivial Alexander polynomial, but as of yet no knot
has been found that cannot be distinguished from the un-
knot using more general knot polynomials. More impor-
tant, finding noncombinatorial interpretations of these new
invariants is now a major area of research.

EXERCISES
3.1. Compute F[K] where K is the (a) figure 8 knot,
(b) (2,2)-torus link, (c) (2,—2)-torus link.
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APPENDIX 2
ALEXANDER POLYNOMIALS

3, t2-t+1

4, t2-3t+1

5, t-34+2-t+1

53 262 —3t+2

6; 2t2-5t+2

62 t*—-3t3+3t2-3t+1

65 t1-3t3+5t2-3t+1

Ty -0+t -3 4+2-t+1

72 3t2—-5t+3

Ts 24 -3t3+3t2 -3t +2

Ta A2-Tt+4

Ts 21— 43+ 582 -4t +2

Te t1-5t34T2-5t+1

Tr  t1—5t34+9t2 -5t +1

8 32-Tt+3

8 t6-3t5+3t4—3t3+3t2-3t+1
8 42 -9t+4

84 2t —5t3 45t —5t+2

8s 18 —3t5+4t1 —5t3+4t2 -3t +1
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8¢ 2tt—6t3+Tt2—6t+2

8; t5-3t545t4—5t3 452 -3t+1
8 2t —6t3+9t2—6t+2

8 53t 45t —Tt3 4512 -3t+1
810 t0-3t5+6t2—Tt3+6t2—-3t+1
811 24—-Tt3 492 Tt +2

812 t-T34+132-Tt+1

813 2t —Tt3 4+ 1142 -7t +2

814 2t4—8t2+1112-8t+2

815 3t*—8t3+11t2-8t+3

816 t0—4t54+8t4—-9134+8t2—4t+1
817 t0—4t5 48t 1113 +8t2 -4t +1
818 t5—5t5+10t* —13t3 +10t2 - 5¢ +1
819 t0—-t0+t3—-t+41

820 t1—-2t34+3t2-2t+1

821 t1—4t3+5t2-4t+1

9, BT+t -ttt 32—t 41
9, 42-Tt+4

9y 2t —3t54+3t1 -3t +3t2 -3t +2
9y 3t*—5t3+5t2-5t+3

95 6t2—11t+6

9¢  2t6 —4t% 4+ 5t* — 513 + 52 — 4t +2
97 3 —T3 492 -Tt+3

9s  2t4 813+ 112 -8t +2

99 26— 45 46t — T3+ 612 -4t +2
910 41 —8t3+9t%2 -8t +4
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9y S5+ Tt T3+ T2 -5t +1
9;2 2t —9t3 41312 -9t +2

913 4t*—9t3 +11t2 -9t +4

914 2t*—9t34+15t2 — 9t +2

915  2t* —10t3 + 15¢2 — 10t + 2

916 2t8 —5t5 +8t4 — 03 482 -5t +2
917 5 —5t54+9t* —9t3 4+ 9¢2 — 5t +1
918 4t —10t3+13t2 - 10t +4

919 2t*—10t3+ 172 — 10t +2

999 65154941113 4+92 -5t +1
9y 24 —1183 4+ 17t2 — 11t +2

922 16 —5t5 41064 — 1143+ 1062 -5t +1
923 4t —1183 41562 — 11t +4

924 5 —5t54+10t* —13t3 4+ 102 -5t + 1
995 3tt—12t34+17t2 - 12t 43

926 16— 515 +11¢4 — 133 + 1142 -5t 41
927 16— 5t5 41144 — 1563 41142 -5t +1
928 5 —5t5 + 12t — 1563 +12¢2 —5¢ + 1
920 18 —5¢5+12t%4 - 15134122 -5t +1
930 0 —585 41264173 4+12¢2 -5t +1
93, 60— 55+ 13t4 — 1713 +13t2 -5t +1
93, 106—6t°+14t4 —17t3 + 1442 -6t +1
933 16— 665 +14¢* — 193 + 1442 - 6t + 1
934 5 —6t5 4+ 16t* — 23t3 +16t2 — 6t 41
935 Tt2—13t+7

93¢ 16 —5t5 + 8t —9t3 +8t2 -5t +1
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937 2t — 1183 +19t2 — 11t +2

938 5t1—14t3 +19t2 - 14t +5

939 3t —1413 42142 — 14t +3

940 t0—Tt5 1814 —23t3 +18t2 Tt +1
94 3t*—12t341912-12t+3

942 23412 -2t41

943 t0—3t5+204 —t34+2¢2-3t+1
944 143472 -4t+1

945 t1—6t3+9t2-6t+1

948 2t2-5t+2

947 18— 45 +6t* —5t34+6t2 —4t+1
948 t*—T3+1142-Tt+1

940 3t*—6t34+7t2-6t+3




REFERENCES

Books and Six texts on knot theory are
Survey Articles listed here. The book by Rei-
demeister, though dated, of-
fers an accessible account of many of the details not in-
cluded here. Crowell and Fox focus on algebraic tech-
niques, and include a careful presentation of the funda-
mental group. Basic algebraic topology is a prerequisite of
Rolfsen’s book, and Burde and Zieschang offer the most
advanced treatment. Kauffman begins with an elementary
presentation; the latter chapters call on a background in
algebraic topology. Finally, Moran’s book begins with a
development of the basic tools of the subject, such as the
fundamental group, and then focuses on the special topic
of braids and the relation of braids to knots and links. Bir-
man’s book offers a more advanced treatment of braids.
Four survey articles are listed. The papers by Kauff-
man and by Lickorish and Millet are excellent introduc-
tions to the new combinatorial methods summarized in
Chapter 10. Fox’s “Quick Trip” includes a discussion of
higher dimensional knots and also summarizes many of
the methods and results of classical knot theory. The ar-
ticle by Gordon is an excellent survey from an advanced
viewpoint.
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Alexander polynomial, 3, 48
algebraically slice, 198
alternating knot, 132
amphicheiral, 152, 155

Borromean link, 10
bracket polynomial, 217
Brunnian link, 10
braid, 135

axis, 136

group, 137

index, 137
bridge index, 138

checkerboarding, 61
colorable, 32
concordance, 180, 201, 205
conjugate, 97
conjugation, 88
connected sum, 5, 39
continued fraction, 141
Conway polynomial, 207
covering link, 158
crossing index, 132
crossing point, 23

cut and paste, 80

cycle, 84

cyclic structure, 97

Dehn Lemma, 6, 104

determinant, 45, 119, 130

doubled knot, 35, 73, 133,
155

elementary deforma-
tion, 17

equivalent, 18

equivariant, 168

Euler characteristic, 62

figure-8 knot, 21, 123, 153,
203

Fox derivative, 124

fundamental group, 83, 105

generate, 86

genus, 63, 72

group of a knot, 103
HOMFLY polynomial, 215

innermost circle, 80
inverse, 26

Jones polynomial, 215

Kauffman polynomial, 219
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knot, 15
knot diagram, 21

labeling, 39

link, 16

linking number, 36, 37, 110,
158

mirror image, 26
mutant knot, 214

nullity, 45

obverse, 26
oriented knot, 25
overcrossing, 6, 23
overpass, 23

polyhedral surface, 57
presentation, 102
partial derivative, 124
periodic knot, 152, 156
polygonal curve, 15
pretzel knot, 9, 123
prime knot, 5
projection, 21

quotient knot, 157

rank, 46

regular projection, 22
Reidemeister moves, 30
reverse, 25, 50, 152
ribbon knot, 194

right handed crossing, 36
Riemann-Hurwitz

formula, 168

Schonflies theorem, 20

Seifert circles, 71

Seifert matrix, 109

Seifert surface, 70

sign of permutation, 89

signature, 120, 130

signature function, 122

slice disk, 194

slice knot, 180, 193

splitable, 201, 209

spun knot, 187, 193
twist, 188

square knot, 39

surgery, 73

symmetric group, 83

torus knot, 4

torsion invariants, 47
total degree, 166
transposition, 86
trefoil, 3, 15, 122
triangulated, 58
triangulation, 57
trivial knot, 15

undercrossing, 23
underpass, 23

unknot, 15

unknotting number, 132

vertices, 16

Whitehead link, 9, 37, 38, 39






